Environmental behaviour of strontium in some salt affected soils along the Western North coast of Egypt

Doaa T. Eissa¹ Ahmed M. Abou-Shady^{1*} and Sahar M. Ismail¹

ABSTRACT

In the present work, Sr²⁺ contamination in some salt affected soils along the Western North coast of Egypt was investigated. The contamination of Sr²⁺ in different soils samples was evaluated using different risk indices such as enrichment factor (EF), geo-accumulation index (I_{geo}) , contamination factor (CF), the degree of contamination (C_d), modified degree of contamination (mC_d), pollution load index (PLI), soil pollution index (SPI), and ecological risk assessment (RAC). The concentrations of Sr^{2+} were investigated according to the bioaccumulation (BAC) in different plant species such as tomato (Solanum lycopersicum), leek (Allium ampeloprasum), barley (Hordeum vulgare), olive (Olea europaea) , alfalfa (Medicago sativa), sweet sorghum (Sorghum vulgare var. sacchratum), fig (Ficus carica), apple (Malus domestica), mountain spinach (Atriplex hortensis), onion (Allium melongena), eggplant (*Solanum* camphor cena). (Cinnamomum camphora), faba bean (Vicia faba), galawein (Sonchus oleraceus L.), and orange (Citrus Sinensis). The obtained results showed that, the mean value of EF for Sr²⁺ was the highest (15) among the other associated elements. Although, the highest I_{geo} values was observed with Zn^{2+} followed by Cd^{2+} and Sr^{2+} , Sr^{2+} is not belongs to contamination category. According to CF index, Sr²⁺ is classified as low degree of contamination. According to mC_d classification, Sr²⁺ contamination level is belongs to nil to very low degree of contamination class. The SPI presented that Sr^{2+} is considered moderate to highly contamination element. The highest values of BAC was found to be 2.018 in leek, while the lowest BAC value was 0.005 in tomato. To compare the concentration of median Sr in the studied area with its concentrations in the land of the African continent and the world, the median Sr in the western north coast of Egypt (449 mg/kg) appear to be very close to the empirical data value from Africa and higher than the empirical data value globally.

Keywords: Strontium; Contamination; Risk indices; Bioaccumulation

INTRODUCTION

Strontium (Sr^{2+}) pollution is considered a big dilemma nowadays, because of the increases concentration in wastewater and other areas (Abou-Shady, 2017). Sr^{2+} interference with the biological processes that normally involve calcium and eventually

skeletal development. The fact that Sr^{2+} is chemically similar to calcium allows it to exchange imperfectly with calcium in bone and other cellular that are enriched in calcium. Also, the function of different enzymes that are calcium dependent will be substituted when Sr^{2+} exists that may modify kinetic parameters. Sr^{2+} can interact with secondary cell messenger systems and transporter systems that normally use calcium (ATSDR, 2004).

At high doses of Sr²⁺, neurotoxic and neuromuscular perturbations may be caused. The total daily intake of Sr^{2+} for adults in many parts of the world is estimated to be up to 4 mg day⁻¹. Sr²⁺ occurs naturally in earth's crust (approximately 0.02-0.03%) in mineral forms such as celestite (strontium sulfate) and strontianite (strontium carbonate). However, minor amounts of Sr²⁺ exist in other mineral deposits and close to sedimentary rocks associated with gypsum, anhydrite, rock salt, limestone, and dolomite. Sr²⁺ can also occur in shales, marls, and sandstones (ATSDR, 2004). low concentrations of the Sr^{2+} may be adsorbed on calcium carbonate via electrostatic attraction force as hydrate ions, however at high concentrations Sr^{2+} may be precipitated as strontianite (strontium carbonate) (Parkman et al., 1998).

The main objective of the present work was to investigate the environmental behavior of Sr²⁺ in some salt affected soils along Western North coast of Egypt. The transportation of Sr^{2+} from soil to the grown plants was also investigated. The contamination levels of Sr^{2+} concentrations were evaluated using risk indices such as enrichment factor (EF), geo-accumulation index (I_{geo}) , contamination factor (CF), the degree of contamination (C_d) , modified degree of contamination (mC_d) , pollution load index (PLI), soil pollution index (SPI), and risk assessment code (RAC). In addition, Sr²⁴ was containing plants investigated using bioaccumulation (BAC).

MATERIALS AND METHODS

Soil sampling and analysis:Soil samples were collected from different locations between latitude 27° 2° E - 29° 55° E and 30° 40° N - 31° 22° N. These areas include different towns such as

¹Laboratory of Water & Soil Chemistry, Water Resources and

Desert Soils Division, Desert Research Center, El-Matariya 11753, Cairo, Egypt.

^{*}Corresponding author. Tel. +201017442805

E-mail address: aboushady@ymail.com

Received March 13, 2018, Accepted April 26, 2018

Burg El Arab, El Hammam, Al Alameen, Sidi Abdel Rahman, Al Dabaa, Ras Alhekma, and Marsa Matrouh. Forty three surface (0-25) cm and subsurface (25-50) cm soil samples were collected from 22 sites that represented calcareous soils along North Western Coastal Plain (Fig. 1). Sixty plant samples, grown in twenty one locations, representing the different plant species were collected.

Soil texture was determined using international pipette method. Organic matter content was determined according to Walkley and Black method. Soil pH was determined in the soil suspension of 1:2.5. Total soluble salts were determined in soil - water extract (1:2.5). Total carbonate content was determined using Collin's calcimeter method (Jackson, 1973). Heavy metals content was determined using Inductivity Coupled Argon Plasma (ICAP). Sr²⁺ fractions were determined using sequential extraction methods (Kilmer and Alexander, 1949, Piper, 1950, Jackson, 1973, Tessier *et al.*, 1979, Jena *et al.*, 2013).

Plant analysis

Plant samples (aerial parts and roots) were thoroughly washed with distilled water and dried at 70° C. Afterwards, plant samples were digested using the mixture of H₂O₂ and H₂SO₄ according to Nicholson (1984).

Sr²⁺ risk indices

Enrichment factor (EF) : The EF was utilized to assess the level of contamination and possible anthropogenic impact of Sr^{2+} in the studied soils along

the Western North Coast of Egypt. In the present study, Fe was used as the conservative tracer to differentiate natural components from the anthropogenic samples. The EF was calculated as follows according to Ergin *et al.*(1991), Abrahim and Parker (2008) and Chen *et al.* (2007):

$$EF = \left(\frac{(C_x / C_{F_e})_{sample}}{(C_x / C_{F_e})_{\text{Re ference}}}\right) \qquad (1)$$

where $(C_x/C_{Fe})_{sample}$ is the a ratio content of the element and Fe in the studied sample, and $(C_x/C_{Fe})_{Reference}$ is the same ratio in the earth's crust Rudnick and Gao (2004) and Nadimi-Goki *et al.* (2014).

Geo-accumulation index (I_{geo}): Another approach to estimate the contamination levels of Sr^{2+} is the geo-accumulation index (I_{geo}). This method assesses the degree of metal pollution in terms of seven enrichment classes based on the increasing numerical values of the index and could be calculated as follows according to Muller (1969) and Rudnick and Gao (2004):

$$I_{geo} = Log_2(C_x/1.5b_x) \tag{2}$$

where C_x is the content of the element in the enriched samples, and b_x is the background value of the element.

Contamination factor (CF): Contamination factor (CF) is the ratio of metal concentration in soil sample to its concentrations in the background. The CF was

calculated using the following equation Hakanson (1980):

$$CF = C_{\chi} / C_{r} \tag{3}$$

where C_x and C_r are the mean concentrations of the metal contaminants in the soil samples and background reference material, respectively Chen *et al.*(2015).

The degree of contamination (Cd): The degree of contamination (C_d) is based on the CF of the pollutant and may be calculated according to the following equation (Swarnalatha *et al.*(2015).

$$C_d = \sum_{i=1}^n CF \tag{4}$$

where n is the number of analyzed elements and i is 1th element, and CF is the contamination factor.

Modified degree of contamination (mCd): Abrahim and Parker (2008) presented a modified form for the Hakanson (1980) equation. The modified formula is generalized by defining the degree of contamination (mC_d) as the sum of all the contamination factors (C_d) for a given set of pollutants divided by the number of analyzed pollutants. The modified degree of contamination is given from the following equation:

$$mC_d = \frac{\sum_{i=1}^{l=n} CF}{n}$$
(5)

where n is the number of analyzed elements and CF is the contamination factor.

Pollution load index : To estimate the overall pollution status of the studied samples, the pollution load index (PLI) was calculated using the following equation Chen *et al.* (2015) and Qing *et al.* (2015).

$$PLI = \sqrt[n]{(CF_1 \times CF_2 \times CF_3 \times CF_4.... \times CF_n)}$$
(6)

where CF represents the contamination factor of a metal, and n represents the specific metals contamination factor.

Soil pollution index: Soil pollution index (SPI) is a simple well known pollution evaluation tool was used to identify single element contamination indices. SPI was calculated using the following equation:

$$SPI = \frac{Metal \ content \ in \ soil}{Permissible \ level \ of \ metal \ in \ soil} \tag{7}$$

The permissible level of metals has been provided by soil quality guideline according to Gowd *et al.* (2010).

Environmental implications: The fractionation of metals is of critical issue because of their potential toxicity and mobility Maiz *et al.* (2000). The fractions that are most influenced by human activity include the exchangeable and carbonate-bound fractions, in which metals are weakly adsorbed and can become more bioavailable due to equilibration with the aqueous phase Rath *et al.* (2009). The reactivity of sediments was evaluated via applying the principles of the risk assessment code (RAC). The RAC is a scale that used to assess potential mobility and risk based on the percentage of exchangeable and carbonate-bound metal in the sediment Perin *et al.* (1985); Jain (2004); Ghrefat and Yusuf (2006) and Karak *et al.*(2011).

Strontium bioaccumulation in plant: The biological absorption coefficient (BAC) was used to characterize the degree of elements uptake by plants from soil. Nagaraju and Karimulla (2002) have defined the BAC as the ratio of concentration of an element in plant ash to the total metal concentrations in soils. On the other hand, Mountouris *et al.* (2002) and Hassinen *et al.* (2009) have defined the bioconcentration factor or translocation factor as the ratio of metal concentration in the edible part of vegetables such as leaves, seeds, and roots to the total metal concentrations.

Statistical analysis

For statistical analysis of the present data, both descriptive and multivariate data analysis was used, such as Cluster analysis, Factor analysis, and Principal Component Analysis. SPSS (SPSS 20.exe) were used to calculate the descriptive statistics (Min., Max., mean, Std. Deviation, median, skewness, kurtosis, factor analysis and Cluster analysis) and assess the elements' correlations with some soil parameters.

RERSULTS AND DISCUSSION

The present study dealt with environmental behavior of Sr^{2+} in some salt affected soils along the Western North Coast of Egypt. Tables (1a and ab) shows a summary of some physical and chemical properties for the investigated soils. In general, soil pH ranged from 7.0 to 8.9 denoting to the neutral to alkaline soil reaction. EC ranged from 0.20 dS m⁻¹ to 12.21 dS m⁻¹ indicating non-saline to extremely saline soil. Organic matter content ranged from 0.001% to 1.67%. CaCO₃ content ranged from 12.31% to 42.80%. CEC ranged from 1.70 meq 100g⁻¹ to 18.90 meq 100g⁻¹. Percentage of sand fraction varied from 46.20% to 95.61% while clay content ranged from 2.68 to 32.80%.

The risk indices were explicit to investigate the contamination degree of Sr^{2+} and other associated elements in the studied soils. The first risk indices was enrichment factor (EF). If the EF is higher than 1, the metal concentration in the soil sample will enrich

									CEC
	\mathbf{Sr}^{2+}		EC	OM	CaCO ₃	Sand	Silt	Clay	(meq 100g ⁻
	(μgg^{-1})	PH	(dS m ⁻¹)	(%)	(%)	(%)	(%)	(%)	1)
Minimum	159.1	7.00	0.20	0.001	12.31	46.2	1.71	2.68	1.7
Maximum	740.0	8.91	12.21	1.67	42.8	95.61	22.4	32.8	18.9
Mean	442.9	7.80	2.88	0.47	28.08	80.31	10.02	9.66	6.2
Median	449.0	7.81	1.71	0.38	26.90	83.62	10.15	6.82	4.9
Std.Deviatio									
n	180.7	0.54	2.83	0.42	10.67	11.80	5.98	7.23	4.3
Skewness	-0.08	0.05	1.68	1.30	-0.06	-1.09	0.23	1.68	1.2
Kurtosis	-1.29	-1.16	2.85	1.31	-1.58	1.39	-1.01	2.57	0.7

Table 1a. the main physical and chemical properties of the studied soils

Table 1b. the main physical and chemical properties of the studied soils

	Fe	Mn	Zn	Cu	Со	Ni	Pb	Cr	Cd	Ca	Mg	Ba
						(μ	gg ⁻¹)					
Minimum	10530.0	54.1	13.6	2.6	1.3	3.2	0.0	7.7	0.0	22570.0	5909.0	4.3
										191700.		
Maximum	59230.0	1010.0	608.1	38.1	33.2	64.2	7.6	136.1	3.1	0	19680.0	40.3
										102431.		
Mean	16318.6	197.7	100.0	11.0	5.9	16.5	2.5	28.9	0.2	9	12229.5	17.5
Median	14925.0	145.4	52.1	9.4	4.1	14.5	1.9	22.6	0.1	97040.0	12320.0	15.8
Std.Deviatio												
n	7151.3	155.7	110.4	7.0	5.4	12.2	2.1	23.1	0.5	38641.4	3019.1	9.9
Skewness	5.4	3.6	2.7	2.1	3.3	2.2	1.3	2.9	5.7	0.2	0.2	0.5
Kurtosis	32.4	17.4	9.8	5.4	15.2	6.0	0.9	10.8	34.5	-0.3	0.4	-0.7

Table 2. The Enrichment factor (EF) for Sr²⁺ and some associated elements in the studied soils

Element	Number of soil samples	Minimum	Maximum	Mean	Std. Deviation
Ba	43	0.019	1.426	0.392	0.327
Sr	43	1.887	54.376	15.046	13.085
Cd	43	0.079	5.402	1.263	2.361
Co	43	0.405	2.265	1.752	0.234
Cr	43	0.905	5.831	1.396	0.778
Cu	43	0.470	3.921	1.033	0.580
Mn	43	0.523	2.140	1.242	0.284
Ni	43	0.480	3.690	0.946	0.622
Pb	43	0.010	1.492	0.388	0.257
Zn	43	1.010	15.896	4.380	3.570

Table 3. Index of geoaccumulation (I_{geo}) for contamination levels in soil

Igeo	Class I _{geo} Value	Contamination Level	
1	$0 < I_{geo} < 1$	Uncontaminated/moderately contaminated	
2	$1 < I_{geo} < 2$	Moderately contaminated	
3	$2 < I_{geo} < 3$	Moderately/strongly contaminated	
4	$3 < I_{geo} < 4$	Strongly contaminated	
5	$4 < I_{geo} < 5$	Strongly/extremely contaminated	
6	$5 < I_{geo}$	Extremely contaminated	

Mean values of the I_{geo} for all elements which have been calculated and presented in Fig. 3 and table (4). This mean The I_{geo} value of all elements remains in class '0', so the studied areas considered uncontaminated category.

soil values and the source of the metal in the topsoil is likely to be anthropogenic. On the other hand, when the EF values are less than 1, this indicates that the metal concentration is not enriched and may be related to the natural source. If the EF values are equal to 1, this indicates that metal concentration and its reference relative to the average of continental crust and surface

value are the same Swarnalatha *et al.* (2015). The EF values for Sr^{2+} and some associated elements are presented in Table (2). The maximum values of the EF was observed with Sr^{2+} and Zn^2 , respectively compared with that was observed with the other associated

elements. This may be owing to the fact that Sr^{2+} is strongly associated with calcium and indicative calcareous rocks. It is clear that there is no enrichment risk for Ba, Co, Cr, Cu, Mn, Ni, and Pb. The lowest values of EF were observed with Pb^{2+} followed by Ba < Cd < Co < Cu < Ni < Mn < Cr < Zn < Sr, Fig. (2).

Fig. 2. Enrichment factors for some element in the studied soils

	Table 4	l. Indexes o	f geo-accumulation	(Ig)	for some	elements co	oncentrations in	n the studied soils
--	---------	--------------	--------------------	------	----------	-------------	------------------	---------------------

Element	Number of soil samples	Minimum	Maximum	Mean	Std. Deviation
Ba	43	-7.31	-4.08	-5.55	0.92
Sr	43	-1.59	0.62	-0.26	0.68
Cd	43	-7.46	0.83	-4.28	1.65
Co	43	-4.50	0.15	-2.75	1.07
Cr	43	-4.77	-0.64	-3.17	0.89
Cu	43	-5.49	-1.64	-3.66	0.82
Fe	43	-3.26	-0.76	-2.69	0.38
Mn	43	-4.88	-0.65	-3.28	0.85
Ni	43	-5.89	-1.55	-3.82	0.95
Pb	43	-10.75	-3.17	-5.31	1.52
Zn	43	-4.10	1.39	-1.84	1.32

Table 5. the terminologies used to describe the contamination factor CF (Hakanson <i>et al.</i> , 1	<u>980)</u>
---	-------------

CF	C_d	Description	
CF<1	C _d <7	Low degree of contamination	_
1 <cf<3< td=""><td>$7 < C_d < 14$</td><td>Moderate degree of contamination</td><td></td></cf<3<>	$7 < C_d < 14$	Moderate degree of contamination	
3 <cf<6< td=""><td>$14 < C_d < 28$</td><td>Considerable degree of contamination</td><td></td></cf<6<>	$14 < C_d < 28$	Considerable degree of contamination	
CF>6	C _d >28	Very high degree of contamination	
			_

Mean of all CF values is less than 1 except mean value of CF for Sr is (1.38), which indicated that CF for Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn are low contamination but CF for Sr only is moderate contamination. Value C_d ranged from 1.50 to 11.35 and its mean value is 3.49 i.e. this value less than 7 so its description is low degree of contamination, Table (5 and 6) and Fig. (4).

For the classification and description of the mC_d seven gradations are proposed as shown in Table (7).

 mC_d is ranged from 0.14 to 1.03 and its mean equal to 0.317, i.e. this less than 1.5. so the class of modified degree of contamination level is nil to very low degree of contamination, Table (7).

The pollution load index values are used to classify samples as; unpolluted (PLI \leq 1), moderately polluted (PLI = 1–3), highly polluted (PLI = 3–5) or very highly polluted (PLI > 5) (Qing *et al.*, 2015). The pollution load index has been calculated and ranged from 0.06 to 0.54 and its mean is 0.163, i.e. it less than 1,so can classify as unpolluted.

The soil pollution index level of each heavy metal present was classified as low contamination (SPI \leq 1), moderate contamination (1 < SPI \leq 3) or high contamination (SPI > 3) (Chen *et al.*, 2005). All calculated values of SPI for all elements except SPI of Sr and Zn is less than 1. So the pollution index levels of Ba, Cr, Cu, Pb and Zn are low contamination and while SPI of Sr is moderate contamination, Table (8) and Fig. (5).

	Tal	ble	6.	C	ontamination	factors	for	some	elements	the	in	studied	soil	S
--	-----	-----	----	---	--------------	---------	-----	------	----------	-----	----	---------	------	---

Element	Number of soil samples	Minimum	Maximum	Mean	Std. Deviation
Ba	43	0.009	0.088	0.038	0.022
Sr	43	0.497	2.313	1.384	0.565
Cd	43	0.009	2.658	0.172	0.409
Co	43	0.067	1.660	0.295	0.269
Cr	43	0.055	0.965	0.205	0.164
Cu	43	0.033	0.483	0.139	0.088
Fe	43	0.157	0.883	0.243	0.107
Mn	43	0.051	0.953	0.186	0.147
Ni	43	0.025	0.513	0.132	0.097
Pb	43	0.001	0.166	0.055	0.045
Zn	43	0.088	3.923	0.645	0.712

Fig.4. Contamination factor for metals in the studied soils

mC _d Class	Modified Degree of
	Contamination Level
$mC_d < 1.5$	Nil to very low
$1.5 \le mC_d < 2$	Low
$2 \le mC_d < 4$	Moderate
$4 \le mC_d < 8$	High
$8 \le mC_d < 16$	Very high
$mC_d \ge 32$	Extremely high
$16 \le mC_d < 32$	Ultra high

Table 7. Different modified degree of contamination (mC_d) for soil

Correlation analysis:

Significant correlation was found among trace element concentrations and some physo-chemical properties, especially Sr/Ca (r=0.60) That agree with the fact Sr and Ca have similar ionic radii and other research suggesting that Sr and Ca are associated mostly with the mineral phase in soils, Sr/Ba (r=0.48), Sr/Co (r=-0.35), Sr/pH (r=-0.42), Sr/OM (r=0.37) and Sr /CaCO₃ (r=-0.38). Almost trace elements were

correlated with Fe and Mn in soils (Table 9), These correlation coefficients were the strongest with Mn and Fe, particularly Mn/Fe (r=0.85), Zn/Fe (r=0.73), Cu/Fe (r=0.61), Co/Fe (r=0.84), Ni/Fe (r=0.56), Pb/Fe (r=0.45), Cr/Fe (r=0.79), Mg/Fe (r=0.44), Zn/Mn (r=0.84), Cu/Mn (r=0.77), Co/Mn (r=0.95), Ni/Mn (r=0.58), Pb/Mn (r=0.66), Cr/Mn (r=0.87) and Mg/Mn (r=0.62). This may be suggesting that trace elements are associated with the Fe-Mn oxyhydroxides. The statistical analysis reveals that Zn in soils is highly significant positively correlated with Cu (r = 0.78), Co (r = 0.78), Ni (r = 0.45), Pb (r = 0.69), Cr (r = 0.68) and Mg (r = 0.53). and organic matter is highly significant positively correlated with Fe, Mn, Zn, Cu, Pb, Ca, silt % and CEC while being significant negatively correlated with sand % (r = -0.53). Soil pH is significant positively correlated with clay %, Mn, Cu, Co, Ni, Pb and Mg. Soil salinity is correlated with sand % and CEC,table(9).

Table 8. Soil pollution index (SPI) for some elements concentratons in studied soils

Element	Number of soil samples	Minimum	Maximum	Mean	Std. Deviation
Ва	43	0.009	0.081	0.035	0.020
Sr	43	0.796	3.700	2.215	0.904
Cr	43	0.121	2.127	0.451	0.361
Cu	43	0.042	0.605	0.175	0.111
Pb	43	0.000	0.055	0.018	0.015
Zn	43	0.068	3.041	0.500	0.552
4- 3- Burg 1- 0-	T SPI Ba	SPI Sr SI	*	× SPI Pb SPI Zn	

Fig.5. Soil pollution Indexes for metals in the studied soils

	Sr ²	H	EC	OM	CaCO3	Sand	Silt	Clay	CEC	Fe	Mn	Zn	з	3	Ņ	qd	ъ	5	С
Sr. ⁵	1.00	1.00															5	3	5
Н	-0.02	-0.17	1.00																
EC	.366	-0.13	0.19	1.00															
MO	-379-	0.12	0.23	-0.28	1.00														
CaCO3	-0.11	0.05	-309-	526-"	-0.01	1.00													
Sand %	0.24	-0.25	0.22	.466"	-0.14	870-	1.00												
Silt%	0.05	.318	-0.11	0.18	-0.21	20.0	-0.13	1.00											
Clay %	0.01	0.03	.319	.381	0.12	889	.616	-0.02	1.00										
CEC	-0.02	0.06	-0.02	.310	0.02	-0.28	0.26	0.06	0.25	1.00									
a.	-0.18	.385	-0.02	.317	0.11	-0.27	0.13	-0.01	0.26	.848"	1.00								
Mn	-0.04	0.24	0.00	.502	-0.02	-0.29	0.18	-0.07	0.22	.729	.839	1.00							
ςμ	-0.21	.336	-0.10	.393".	0.08	-0.18	0.03	-0.05	0.22	.614	.769"	.781	1.00						
ō	353-`	.383	0.00	0.21	0.22	-0.18	0.02	-0.03	0.21	.835"	945			00 1					
S	-0.30	.334	-0.02	0.01	0.14	-0.15	0.06	-0.05	0.25	.560	580	-448	576		UU +				
Ň	-0.24	.438	0.22	.428	0.08	522-"	.310	-0.02	.447	.454	.666		570		, un	90 F			
Ър	-0.23	0.27	-0.02	0.22	0.24	-0.17	0.04	-0.04	0.21		874		, 1999		104		0		
ප	-0.13	0.29	-0.03	-0.07	-0.23	0.19	-0.22	-0.06	-0.17	90.0-	60.0	20.0	PD0	800	CCC:	30C-	00.1	1 00	
B	.601	-0.04	0.05	.309	-0.27	-0.18	0.20	0.08	0.10	-0.0e	-0.02	0.01	60.0-	0.0	20.0	21.0 U U	20.0	00.1	
S	-0.21	.308	0.02	0.26	0.07	-0.08	-0.03	-0.07	0.07	442"							00.0-	70.0	2
Mg	.481	90.0-	-0.11	0.25	340.	-0.21	0.21	0.13	0.12	-0.15	-010	YOU T	64 U		100.	6/6. 2000	1970	0.02	0.0
Ba											210	6	71.0	-775'-	-312-	00.0	-0.26	-0.07	0/17

Comment	Ir	nitial Eigenv	values	Extract	ion Sums of Loadings	Squared	Rota	tion Sums of S	Squared Loadings
Component	Total	% of	Cumulative	Total	% of	Cumul	Total	% of	Cumulativa 0/
	Total	Variance	%	Total	Variance	ative %	Total	Variance	Cumulative %
1	6.379	49.073	49.073	6.379	49.073	49.073	6.186	47.588	47.588
2	2.243	17.255	66.328	2.243	17.255	66.328	2.422	18.632	66.220
3	1.071	8.242	74.570	1.071	8.242	74.570	1.086	8.350	74.570
4	0.738	5.679	80.248						
5	0.705	5.420	85.668						
6	0.555	4.267	89.935						
7	0.429	3.297	93.232						
8	0.344	2.644	95.876						
9	0.212	1.628	97.504						
10	0.126	.972	98.476						
11	0.102	.786	99.262						
12	0.074	.572	99.834						
13	0.022	.166	100.000						
Comp	onent Ma	ntrixa		Rotated	Component	Matrixa			
		Com	ponent			Compone	ent	_	
	PC	1 PC2	PC3		PC1		PC2	PC3	
Co	0.97	0 - 0.059	-0.015		0.968		-0.029	0.048	
Mn	0.95	0.174			0.935		-0.262	0.035	
Cr	0.88	0.035	-0.055		0.886		0.075	0.067	
Zn	0.85	0.258	0.034		0.874		-0.154	-0.012	
Fe	0.83	0.152	-0.243		0.860		-0.037	-0.206	
Cu	0.83	0.089			0.833		-0.087	0.041	
Pb	0.69	0.149	0.264		0.702		0.011	0.292	
Ni	0.69	- 0.193	-0.097		0.675		-0.015	0.048	
Mg	0.66	0.126	0.020		0.641		-0.337	-0.057	
Ca	-0.16	66 0.901	0.127		0.023		0.921	0.088	
Ba	-0.27	8 0.834	0.091		-0.099		0.877	0.050	
Sr	-0.31	5 0.722	-0.218		-0.146		0.762	-0.257	
Cd	0.082	- 0.071	0.926		0.027		-0.047	0.931	

Table 10. Total variance explained and component matrices for the heavy metals

Factor analysis to reduce the number of variables, a factor analysis was applied to the available data set by using Principal Component Analysis (PCA) and cluster analysis (CA) were used to distinguish the different groups of heavy metals. PCA with varimax rotation was performed with respected factor loadings were calculated using eigen values >1. The factor loadings may be classified as 'strong', 'moderate' and 'week' considering their significant influence in the geochemical processes corresponding to absolute loading values of > 0.70, 0.70–0.50 and 0.50–0.40, respectively (Liu *et al.*, 2003; Panda *et al.*, 2006). In the current study factor analysis separate the soil analysis data into three factors, which describe the distribution of elements in the studied soils. These factors explain

74.5% of the variance using 13 variables in the analysis .The results of PCA for heavy metal contents are listed in Table (10).

According to these results, Sr, Ca, Ba, Co, Mn, Cr, Zn, Fe, Cu, Pb, and Ni. Mg and Cd concentrations could be grouped into a three component model, the first principal component (PC1) was correlated with Co, Mn, Cr, Zn, Fe, Cu, Pb, Ni and Mg. The second principal component (PC2) includes Sr, Ca and Ba. While Cd was only isolated in the third component (PC3). The result of CA analysis is illustrated in the dendrogram (Fig.6). Three distinct clusters can be identified Cluster I contained Sr, Ca and Ba. While the long distance between Cd and the other heavy metals may suggest that this cluster can be further divided into two sub clusters Cluster II contained Sr, Ca and Ba. The results of PCA agreed well with that of the CA. Therefore, it is suggested from the PCA and CA that the analysed elements may be classified into three groups.

Ecological risk assessment:

The exchangeable and carbonate bound metals easily mobile and thereby make themselves more readily bio-available (Singh et al., 2005). The criteria of risk assessment code (RAC) as given below indicates that the soil that can release <1 % of the total metal in exchangeable and carbonate fractions is considered safe, i.e. in no risk category while that release >50 % of the total metal in the same fraction is considered to be under very high risk category. Low risk is there when the release is 1-10 %, medium risk is there when the release is 11-30%, high risk is there when the release is 31–50% and very high risk (>50%) (Perin et al., 1985). Mean of RAC is 69.237, 69.889, 70.606, 67.289, 72.021, 71.970 and 68.680 in Burg El Arab, El Hammam, Al Alameen, Sidi Abdl Rahman, Al Dabaa, Ras Alhekma, and Marsa Matrouh area respectively, indicating their significant bio-availability which may pose significant ecological risk, (RAC> 50%). Strontium content ratio of F1-soluble fraction is ranged from 0.155 to 0.367, its ratio of F2-exchangeable fractionis ranged from 9.88 to 20.03, its ratio of F3carbonate fraction is ranged from 47.06 to 63.452, its ratio of F4-bound to Fe-Mn oxyhydroxides (Fe-Mn-) ranged from 18.54 to 33.80, its ratio of F5-bound to organic matter (OM-) ranged from 0.954 to 4.953 and its content ratio of F6-residual (Res-) ranged from 0.953 to 3.673, Table (11)

Bioaccumulation of strontium (BAC):

The BAC has a wide range (0.001-100), which could be classified into five groups; Nagaraju and Karimulla (2002), very weak absorption 0.001-0.01; weak absorption 0.01-0.1; intermediate absorption 0.1-1; strong absorption 1–10; intensive absorption 10–100. The BAC of strontium in study area was calculated and the results were shown in Table (12), the classification of BAC could be ordered as follows: very weak absorption (1.66%), weak absorption (16.66%), intermediate absorption (76.66%) and strong absorption (5%), The variation of BAC was not remarkable in different districts, which due to the bio-available contents of strontium were similar in different districts. Furthermore, the highest BAC (2.018) was occurred in Leek (Allium ampeloprasum) and the lowest BAC (0.005)was occurred tomato (Solanum in lycopersicum). The highest Sr/Ca (0.257) was occurred in Sweet sorghum (Sorghum vulgare var. sacchratum) and the lowest Sr/Ca (0.006) was occurred in Olive (Olea europaea). Although the concentration of Sr is considered value but its absorption by all the plants was significantly limited that due to their specific absorption comparing to their Ca absorption.

Fig.6. Dendrogram depicting the hierachical clustering of the heavy metals

Location		Minimum	Maximum	Mean	Std. Deviation
	F1 %	0.161	1.302	0.531	0.390
	F2 %	12.548	17.664	14.675	1.671
	F3 %	48.251	59.456	54.562	5.161
Burg EL Arab	F4 %	18.960	33.414	25.642	6.575
	F5 %	1.524	4.754	2.892	1.523
	F6 %	1.061	2.379	1.698	0.589
	RAC	60.799	75.783	69.237	6.512
	F1 %	0.166	0.720	0.363	0.218
	F2 %	11.361	20.038	16.529	3.286
	F3 %	47.060	56.821	53.361	3.592
El-Hammam	F4 %	21.451	29.075	25.210	2.437
	F5 %	1.375	4.943	2.439	1.367
	F6 %	1.509	2.721	2.098	0.391
	RAC	66.443	74.276	69.889	2.411
	F %	0.294	0.983	0.534	0.309
	F2 %	12.574	16.178	14.560	1.746
	F3 %	49.103	60.509	56.046	5.486
Al-Alameen	F4 %	19.123	33.055	25.178	5.907
	F5 %	1.011	2.105	1.543	0.482
	F6 %	1.901	2.424	2.139	0.215
	RAC	62.727	76.374	70.606	5.799
	F1 %	0.179	0.835	0.532	0.232
	F2 %	11.464	17.972	13.680	2.682
	F3 %	47.650	62.214	53.610	6.559
Sidi AbdlRahman	F4 %	21.978	33.854	27.388	4.683
	F5 %	1.742	4.478	3.202	1.182
	F6 %	0.953	2.213	1.589	0.501
	RAC	59.624	74.656	67.289	5.397
	F1 %	0.181	0.610	0.341	0.189
	F2 %	10.865	17.376	13.821	3.050
	F3 %	54.486	59.867	58.201	2.534
AlDabaa	F4 %	18.547	24.858	22.753	2.861
	F5 %	2.047	2.470	2.325	0.194
	F6 %	1.456	3.272	2.560	0.844
	RAC	69.790	76.061	72.022	2.793
	F1 %	0.154	0.367	0.274	0.109
	F2 %	11.157	16.917	12.953	2.671
	F3 %	53.576	63.452	59.022	4.859
Ras Alhekma	F4 %	19.910	26.317	23.002	2.789
	F5 %	1.927	2.814	2.236	0.415
	F6 %	2.059	3.673	2.514	0.779
	RAC	67.912	75.565	71.975	3.436
	F1 %	0.209	0.590	0.402	0.119
Marsa Matrouh	F2 %	9 886	15 920	11 691	2 198

Table 11. Ratio of Sr in different fractions and RAC in the studied areas

Location		Minimum	Maximum	Mean	Std. Deviation
	F3 %	49.872	62.615	56.991	4.351
	F4 %	21.723	33.800	26.870	4.585
	F5 %	0.954	4.953	2.149	1.086
	F6 %	1.048	2.266	1.897	0.361
	RAC	59.758	73.482	68.682	4.560

Strontium content in F1-soluble fraction, F2-exchangeable fraction, F3-carbonate fraction, F4-bound to Fe-Mn oxyhydroxides (Fe-Mn-), F5-bound to organic matter (OM-), and F6-residual (Res-)

Table 12. Strontium content (ppm) in plants and calculated BAC in study areas

profile No.	Location	Weighted mean of Sr in soil ppm	Sr in plant ppm	plant species	Sr/Ca plant	BAC	Classificatio n of BAC
				tomato (Solanum			intermediate
			56.8	lycopersicum)	0.050	0.239	absorption
				Leek (Allium			intermediate
			25.2	ampeloprasum)	0.033	0.106	absorption
1		237.8					intermediate
1		257.0	30.9	Barley (Hordeum vulgare)	0.043	0.130	absorption
							intermediate
			69.5	Olive (Olea europaea)	0.072	0.292	absorption
							intermediate
			55.6	Alfalfa (Medicago sativa)	0.046	0.234	absorption
	Burg El-			Sweet sorghum (Sorghum			weak
	Arab		35.3	vulgare var. sacchratum)	0.134	0.091	absorption
							intermediate
2		387 3	298.2	Alfalfa (Medicago sativa)	0.015	0.770	absorption
-		50115					intermediate
			205.8	Barley (Hordeum vulgare)	0.009	0.531	absorption
							intermediate
			127.0	Alfalfa (Medicago sativa)	0.007	0.328	absorption
				tomato (Solanum			intermediate
3		422.9	349.9	lycopersicum)	0.041	0.827	absorption
U		,		Sweet sorghum (Sorghum			intermediate
			339.0	vulgare var. sacchratum)	0.033	0.802	absorption
				tomato (Solanum			very weak
			2.0	lycopersicum)	0.035	0.005	absorption
			•••		0.000	0.054	weak
			28.9	fig (Ficus carica)	0.033	0.076	absorption
			22.2		0.00	0.000	weak
			33.3	Faba Beab (<i>Vicia faba)</i>	0.026	0.088	absorption
			266.2		0.057	0.064	intermediate
5	El-Hammam	380.0	366.3	Apple (Malus domestica)	0.057	0.964	absorption
			00.4	Eggplant (Solanum	0.045	0.060	intermediate
			99.4	melongena)	0.045	0.262	absorption
			25.0	Mountain spinach (Atriplex	0.015	0.070	weak
			25.8	nortensis)	0.015	0.068	absorption
			1057		0.020	0.221	intermediate
			125.7	Onve (Olea europaea)	0.030	0.331	absorption
			247	Alfolfo (Madisers	0.029	0.001	weak
		,	34.7	Anana (Medicago sativa)	0.038	0.091	absorption

209 Doaa T. Eissa, Ahmed M. Abou-Shady *et al.*,: Environmental behaviour of strontium in some salt affected soils along

profile No.	Location	Weighted mean of Sr in soil	Sr in plant ppm	plant species	Sr/Ca plant	BAC	Classificatio n of BAC
		ppm	PPIII				
		••					intermediate
			48.9	Barley (Hordeum vulgare)	0.096	0.129	absorption
				Sweet sorghum (Sorghum			intermediate
			66.4	vulgare var. sacchratum)	0.257	0.175	absorption
							intermediate
			198.8	onion (Allium cepa)	0.043	0.523	absorption
				Eggplant (Solanum			intermediate
			155.3	melongena)	0.032	0.853	absorption
			10 6	camphor (<i>Cinnamomum</i>	0.040	0 100	intermediate
			19.6	campnora)	0.049	0.108	absorption
			172.0	Faba Paab (Visia faba)	0.028	0.055	absorption
			173.9	Faba Beab (Vicia Jaba)	0.058	0.955	intermediate
			69.0	Barley (Hordeum vulgare)	0.215	0 379	absorption
6		182.0	07.0	Dancy (Hordean valgare)	0.215	0.577	intermediate
			61.0	Olive (Olea europaea)	0.006	0.335	absorption
			0110		0.000	0.000	strong
			286.6	Orange (Citrus Sinensis)	0.036	1.574	absorption
				Galawein (Sonchus			strong
			286.6	oleraceus L.)	0.036	1.574	absorption
							intermediate
			137.3	fig (Ficus carica)	0.010	0.754	absorption
				Eggplant (Solanum			intermediate
			177.7	melongena)	0.017	0.626	absorption
							intermediate
			232.5	Orange (Citrus Sinensis)	0.015	0.819	absorption
7		283.9					intermediate
		2001	198.2	Alfalfa (Medicago sativa)	0.010	0.698	absorption
			107 (0.010	0.000	intermediate
			197.6	Olive (Olea europaea)	0.012	0.696	absorption
			120.2	fig (Figure agrica)	0.062	0 424	intermediate
			120.2	Ing (<i>Ficus carica</i>)	0.005	0.424	absorption
			6/3 5	ampeloprasum)	0.050	2.018	absorption
8		318.9	0+5.5	Galawein (Sonchus	0.050	2.010	intermediate
			54.7	oleraceus L.)	0.009	0.171	absorption
			5117		0.007	0.171	weak
			22.3	Olive (Olea europaea)	0.015	0.052	absorption
0		12.1.1					intermediate
9		424.1	53.9	fig (Ficus carica)	0.081	0.127	absorption
	A.1. A.1			Leek (Allium			weak
	AI-AIameen		24.7	ampeloprasum)	0.019	0.058	absorption
				Galawein (Sonchus			intermediate
10		173.6	185.5	oleraceus L.)	0.014	0.392	absorption
10		+/3.0					intermediate
			57.4	fig (Ficus carica)	0.010	0.121	absorption
11	Sidi	391.4					intermediate
	AbdlRahma		93.6	fig (Ficus carica)	0.053	0.239	absorption

Table 12. Continued

Table 12	Continued						
profile No.	Location	Weighted mean of Sr in soil ppm	Sr in plant ppm	plant species	Sr/Ca plant	BAC	Classificatio n of BAC
			161.5	Barley (Hordeum vulgare)	0.016	0.413	intermediate absorption intermediate
12		273.6	244.9	fig (<i>Ficus carica</i>) Eggplant (Solanum	0.497	0.895	absorption
			237.3	melongena)	0.011	0.867	absorption intermediate
12		449 5	216.9	Olive (Olea europaea)	0.054	0.484	absorption intermediate
13		448.5	62.0	fig (Ficus carica)	0.146	0.138	absorption intermediate
	AlDabaa		235.6	almonds (<i>Prunus dulcis)</i> Mountain spinach (<i>Atriplex</i>	0.072	0.525	absorption weak
14		(20.5	41.8	hortensis)	0.011	0.066	absorption intermediate
14		629.5	184.5	Apple (Malus domestica)	0.043	0.293	absorption intermediate
			292.6	fig (Ficus carica)	0.037	0.465	absorption intermediate
15	Ras	376.5	167.1	fig (Ficus carica)	0.053	0.444	absorption weak
16	Alhekma	488.0	20.9	Olive (Olea europaea)	0.050	0.043	absorption intermediate
17		494.0	84.5	Barley (<i>Hordeum vulgare</i>) Mountain spinach (<i>Atriplex</i>)	0.140	0.171	absorption intermediate
18		637.9	131.7	hortensis) tomato (Solanum	0.048	0.206	absorption weak
19	Marsa	508.0	25.3	lycopersicum)	0.041	0.050	absorption intermediate
20	Matrouh	697.5	88.7	Olive (Olea europaea) Eggplant (Solanum	0.026	0.127	absorption intermediate
21		685.5	131.6	<i>melongena)</i> Mountain spinach (<i>Atriplex</i>	0.011	0.192	absorption
22		636.5	219.4	hortensis)	0.011	0.345	absorption

And to compare the concentration of median Sr in the studied area with its concentrations in the land of the African continent and the world, table (13) river (52 mg/kg), Japan soils (125 or 98 mg/kg), North American (142 mg/kg).

CONCLUSIONS

The median Sr in the western north coast of Egypt (449 mg/kg) appear to be significantly above empirical data from both Nile Delta (263 mg/kg) and soil Egyptian central Nile Valley (307 mg/kg) and value is very close to the value of Aswan-Sohag (400 mg/kg), Aswan-Asyut valley (214 mg/kg) and Africa (47 mg/kg). The median Sr in the western north coast of Egypt was less than its value globally, England and Wales (27 mg/kg), North Germany (9 mg/kg), North Europe (15 mg/kg), Whole Europe (89 mg/kg), Congo

 Sr^{2+} contamination in some salt affected soils along the Western North coast of Egypt was investigated. The contamination of Sr^{2+} in different soils samples was evaluated using different risk indices such as EF, I_{geo}, CF, C_d, mC_d, PLI, SPI, and RAC. The concentrations of Sr^{2+} in deferent plant species were also investigated according to the bioaccumulation (BAC) for different plant species such as tomato, leek, barley, olive, alfalfa, sweet sorghum, fig, apple, mountain spinach, onion,

Median	Location	Reference
(mg/kg)		
449	the western north coast of Egypt	The present study
263	Nile Delta	Arafa <i>et al.</i> , (2015)
	soil Egyptian central Nile	
307	Valley	Badawy et al., (2017)
214	Aswan-Asyut vally	Arafa <i>et al.</i> , (2015)
400	Aswan-Sohag	Dekov et al. (1997)
47	Africa	Towett et al., (2015)
27	England and Wales	Mc Grath and Loveland (1992).
9	North Germany	Reimann et al. (2003).
15	North Europe	Reimann et al. (2003).
89	Whole Europe	Salminen (2005).
73.7	Central Catalonia	Tume <i>et al.</i> , (2011)
375	Crustal Average	Kabata-Pendias and Mukherjee (2007).
147	various soils	Kabata-Pendias and Mukherjee (2007).
52	Congo river	Dupre <i>et al.</i> , (1996)
125	Agricultural soils in Japan	Yanai <i>et al.</i> , (2012)
98	Japan soils	Takeda (2004)
32-1000	Reported worldwide range	Kabata-Pendias and Mukherjee (2007).
117	Upper Niger	Picouet <i>et al.</i> , (2002)
350	Upper continental crust	Rudnick and Gao, (2004),
175	various soils	Gromet <i>et al.</i> , (1984)
187	various soils	Viers <i>et al.</i> (2009)
142	North American	Forthrof (2012)
142	Shale Composite (NASC)	Earuner, (2015)
175	world average soil (WAS	Kabata-Pendias (2011)
250	Soil of the world	Bowen (1979)

The obtained results showed that, the mean value of EF Table 13. Comparison of Sr^{2+} median values (mg kg⁻¹) in the present work and the obtained data from other

for Sr^{2+} was the highest (15) among the other associated elements. Although, the highest I_{geo} values was observed with Zn^{2+} followed by Cd^{2+} and Sr^{2+} , Sr^{2+} is not belongs to contamination category. According to CF index, Sr^{2+} is classified as low degree of contamination. According to mC_d classification, Sr^{2+} contamination level is belongs to nil to very low degree of contamination class. The SPI presented that Sr^{2+} is considered moderate to highly contamination element. The highest values of BAC was found to be 2.018 in Leek, while the lowest BAC value was 0.005 in tomato.

eggplant, camphor, faba bean, galawein, and orange.

ACKNOWLEDGMENTS

This work was supported by Desert Research Center, Research No: 1822.

REFERENCES

Abou-Shady, A. 2017. Recycling of polluted wastewater for agriculture purpose using electrodialysis: Perspective for large scale application. Chem. Engine. J. 323: 1-18.

- Abrahim, G.M.S. and J. Parker. 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 136: 227-238.
- Arafa, W.M., Badawy, W.M., Fahmi, N.M., Ali, K., Gad, M.S., Duliu, O.G., Frontasyeva, M.V. and E. Steinnes. 2015. Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis. Journal of African Earth Sciences 107: 57-64.
- ATSDR. 2004. Toxicological profile for strontium. Atlanta, GA, United States Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (http://www.atsdr.cdc.gov/toxprofiles/ tp159.html.
- Badawy, W.M., Ghanim, E.H., Duliu, O.G., El Samman, H. and V. Frontasyeva. 2017. Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley. Journal of African Earth Sciences. 131: 53-61.
- Bowen, H.J.M (Ed.). 1979: Environmental Chemistry of the Elements. Academic Press Inc. Ltd., London.

- Chen, C.W., Kao, C.M., Chen, C.F. and C. Di Dong, 2007. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 66: 1431-1440.
- Chen, H., Teng, Y., Lu, S., Wang, Y. and J. Wang. 2015. Contamination features and health risk of soil heavy metals in China. Sci. Total. Environ. 512: 143-153.
- Dekov, V.M., Komy, Z., Araujo, F., Van Put, A. and R. Vann Grieken. 1997. Chemical composition of sediments, suspended matter, river water and ground water of the Nile (Aswan-Sohag traverse). Sci. Total. Environ. 201 (13): 195-210.
- Dupre, B., Gaillardet, J., Rousseau, D. and J. All-Egre. 1996. Major and trace elements of river-borne material: the Congo Basin. Geochim. Cosmochim. Acta 60: 1301-1321.
- Earthref, 2013. GERM Reservoir Database, http://earthref.org/GERMRD/842/>.
- Edinburg: CEP Consultants.
- Ergin, M., Saydam, C., Bas, Türk, O., Erdem, E. and R. Yorük. 1991. Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and _Izmit Bay) of the northeastern Sea of Marmara. Chem. Geol. 91:269-285.
- Ghrefat, H. and N. Yusuf. 2006. Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere. 65: 2114-2121.
- Gowd, S., Ramakrishna Reddy, M. and K. Govil. 2010. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials. 174: 113-121.
- Gromet, L.P., Haskin, L.A., Korotev, R.L. and F. Dymek. 1984. The "North American shale composite": its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta. 48: 2469-2482.
- Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14 (8): 975-1001.
- Hassinen, V., Vallinkoski, V. M., Issakainen, S., Tervahauta, A., K?renlampi, S. and K. Jackson, M. L. 1973. Soil Chemical Analysis, Prentice Hall, England, UK.
- Jain, C. K. 2004. Metal fractionation study on bed sediments of River Yamuna, India. Water Research. 38: 569–578.
- Jena, V., Gupta, S., Dhundhel, R. S., Matic, N., Bilinski, F. S. and N. Devic. 2013 Determination of total heavy metal by sequential extraction fro soil. Inter. J. Res. Environ. Sci. Tech. 3 (1):35-38.
- Kabata-Pendias, A. 2011. Trace Elements in Soils and Plants. CRC Press. http:// dx.doi.org/10.1201/b10158-25.
- Kabata-Pendias, A. and B. Mukhrjee. 2007. Trace elements from soil to humans. Springer, Berlin, pp. 87–415.
- Karak, T., Abollino, O., Bhattacharyya, P., Das, K.K. and K. Paul. 2011. Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant (Camellia sinensis L.). Chemosphere. 85: 948–960.

- Kilmer, V.J. and T. Alexander. 1949 Methods of Making Mechanical Analysis of Soils. Soil Sci. 68: 15.
- Liu, C. W., Lin, K. H. and Y. M. Kuo. 2003. Application of factor analysis in the assessment of ground water quality in a blackfoot disease area in Taiwan. Science of the Total Environment. 313:77–89.
- Maiz, I., Arambarri, I., Garcia, R. and E. Millan. 2000. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution.110: 3-9.
- Mc Grath, S.P. and J. Loveland. 1992. The Soil Geochemical Atlas of England and Wales. Blackie Academic and Professional, London.
- Mountouris, A., Voutsas, E. and D. Tassios. 2002. Bioconcentration of heavy metals in aquatic environments: The importance of bioavailability. *Marine Pollution Bulletin.* 44: 1136–1141.
- Muller, G. 1969. Index of geoaccumulation in sediments of the Rhine River. J. Geol. 2: 108-118.
- Nadimi-Goki, M., Mohammad, W., Claudio, B., Yoichiro, K., Gilmo, V. and A. Livia. 2014. Assessment of total soil and plant elements in rice-based production systems in NE Italy. Journal of Geochemical Exploration 147: 200–214.
- Nagaraju, A. and S. Karimulla. 2002. Accumulation of elements in plants and soils in and around Nellore mica belt, Andhra Pradesh, India—A biogeachemical study. *Environmental Geology*. 41: 852–860.
- Nicholson, G. 1984. Methods of Soil, Plant and Water Analysis. N.Z. Forest Service. F. R. I. Bulletin, 70.
- Panda, U. C., Rath, P., Sundaray, S. K., Majumdar, S. and K.C. Sahu. 2006. Study of geochemical association of some trace metals in the sediments of Chilika lagoon-a multivariate statistical approach. Environmental Monitoring and Assessment. 123:125–150.
- Parkman, R.H, Charnock, J.M, Livens, F.R. and J. Vaughan. 1998. A study of the interaction of strontium ions in aqueous solution with the surfaces of calcite and kaolinite. Geochimica et Cosmo-chimica Acta.62 (9): 1481–1492.
- Perin, G., Craboledda, L., Lucchese, M., Cirillo, R., Dotta, L., Zanette, M. and A. Orio. 1985. Heavy metals speciation in the sediments of Northern Adriatic Sea—a new approach for environmental toxicity determination. In: Lekkas, T.D. (Ed.), Heavy Metal in the Environment 2, (pp. 454–456).
- Picouet, C., Dupre, B., Orange, D. and M. Valladon. 2002. Major and trace element geochemistry in the upper Niger river (Mali): physical and chemical weathering rates and CO2 consumption.
- Piper, C. S. 1950. Soil and Plant Analysis, Waite Agric. Res. Inst., Adelaide, S.A., Australia.
- Qing, X., Yutong, Z. and L. Shenggao. 2015. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety. 120: 377–385.

- Rath, P., Panda, U. C., Bhatta, D. and C. Sahu. 2009. Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahmani and Nandira Rivers, India. Journal of Hazardous Materials. 163: 632–644.
- Reimann, C., Siewers, U., Tarvainen, T., Bityukova, L., Erikson, A., Gilucis, V., Gregorauskiene, V., Lukasev, V.K., Matinian, N.N. and A. Pasieczna. 2003. Agricultural Soils in Northern Europe: a Geochemical Atlas. Geologisches Jahrbuch Sonderhefte, Reihe D Heff SD5, Stuttgart.
- Rudnick, R. and S. Gao. 2004. Composition of the continental crust. In: Rudnick, R. (Ed.), The crust. Elsevier Ltd, UK, pp. 1–64.
- Salminen, R. 2005. Geochemical Atlas of Europe. Part I. Background Information, Methodology and Maps. Geological Survey of Finland. Electronic version http:// www.gsf.fi/publ/foregsatlas.
- Singh, P.K., Mohan, D., Singh, V.K., and A. Malik. 2005. Studies on distribution and fraction of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology. 312:14–27.
- Swarnalatha, K., Letha, J., Ayoob, S. and G. Nair. 2015. Risk assessment of heavy metal contamination in sediments of

a tropical lake. Environmental Monitoring and Assessment.187:322.

- Takeda A, Kimura K. and S. Yamasaki. 2004. Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma. 119:291–307.
- Tessier, P.G., Campbell, C. and M. Bisson. 1979. Sequential extraction procedure for speciation of particulate trace metals. Analyt. Chem. 51: 844- 851.
- Towett, K., Shepherd, K., Tondoh, J., Winowiecki, L., Lulseged, L., Nyambura, M., Sila, A., T-G, Vagen. and G. Cadisch. 2015. Total elemental composition of soils in Sub-Saharan Africa and relationship with soil forming factors. 5: 157-168.
- Tume, P., Bech, J. B., Reverter, F. C., Bech, J. D., Longan, L. D., Tume, L.E. and B. Sep?lveda. 2011. Concentration and distribution of twelve metals in Central Catalonia surface soils. Journal of Geochemical Exploration 109: 92–103.
- Viers, J., Dupr, B. and J. Gaillardet. 2009. Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci. Total Environ. 407: 853–868.
- Yanai, J., Okada, T. and H. Yamada. 2012. Elemental composition of agricultural soils in Japan in relation to soil type, land use and region. Soil Science and Plant Nutrition. 58: 1-10.

الملخص العربي

السلوك البيئى لعنصر الاسترنشيوم فى بعض الاراضى المتاثرة بالاملاح عبر الساحل الشمالى الغربى بمسوك البيئى لعنصر

دعاء عيسى ، أحمد أبو شادى ، سحر اسماعيل

لمعامل التراكم الجغرافي قد تم الحصول عليه مع عنصر الزنك والكادميوم والاسترانشيوم، فان عنصر الاسترانشيوم لا يمكن ضمة ضمن فئة العناصر الملوثة. طبقا لعامل التلوث تم تصنف الاسترانشيوم ضمن درجة العناصر ذات معدل التلوث الضعيف. طبقا لدرجة التلوث المعدلة فان تركيزات عنصر الاسترانشيوم لا يمكن ادراجها ضمن العناصر الملوثة، ويمكن اعتبارة ايضا من العناصر ذات العناصر الملوثة، ويمكن اعتبارة ايضا من العناصر ذات التلوث القليل. وبالنسبة لدليل تلوث الاراضى فان الاسترانشيوم يمكن اعتبارة من العناصر ذات مستوى التلوث المتوسط. وقد سجلت اعلى درجات معدل التركم البيولوجى (٢,٠١٨) مع نبات الكراث، بينما اقل درجات معدل التراكم البولوجى سجلت مع نبات الطماطم.

اجريت دراسة لتقييم مدى تلوث الاراضى المتاخمة للساحل الشمالى الغربى- مصر بالاسترانشيوم. من خلال دراسة موشرات المخاطر مثل عامل التخصيب (EF) ومؤشر التراكم الجغرافي (Igeo) وعامل التلوث (CF) ومؤشر تلوث (Cd) ودرجة التلوث المعدلة (mCd) ومؤشر تلوث التربة، بالاضافة الى تقييم المخاطر الإيكولوجية (RAC). كما تم دراسة مدى التلوث فى الإيكولوجية (RAC). كما تم دراسة مدى التلوث فى التراكم البيولوجي (BAC) للاسترانشيوم فى الطماطم النباتات النامية فى مناطق الدراسة من خلال تقدير معدل والكراث والشعير والزيتون والبرسيم والذرة الرفيعة والتفاح والسبانخ والبصل والباذنجان والكافور والفول والجلاوين والبرتقال. وقد اوضحت النتائج المتحصل عليها ان قيمة عامل التخصيب للاسترانشيوم وصلت لاعلى القيم بالمقارنة بالعناصر الاخرى الموجودة و على الرغم من ان اعلى قيم