The Influence of Humic Acid Treatment on The Performance and Water Requirements of Plum Trees Planted in Calcareous Soil

S. El-Shall¹;W.M.Abd El-Messeih²; Nagwa.A. Abd El Megeed² and Okalebo J.³

ABSTRACT

Research was conducted at the Nubaria Horticultural Research Station, El-Bohira Governorate in Egypt's calcareous soil to determine the effect of humic acid amendments and flood irrigation scheduling on the development and growth of *Prunus domestica* L. (Kelsy plum). The research was conducted over a four year period beginning in 2005 when the plum fruit trees had developed for 2 years having budded on a *Mariana* rootstock. Tests were conducted during 2006- 2009 growing seasons.

The main and interacting effects of flood irrigation frequency and humic acid amendments were tested using a split-plot design experimental set-up. Kelsey plum was planted at a spacing of 4 x 5 m under a flood irrigation system in calcareous soils. The trees were irrigated under three regimes, which were: 5-day (I₁), 10-day (I₂) and 15day (I₃) interval. The humic acid treatments (thereafter referred to as HA) included: humic acid soil application around tree's trunk (T_1) , foliar application (T_2) , soil and foliar application (T_3) and a control (T_4) whereby no humic acid treatment was made. HA treatments were applied on the months of April, May, June and July during each of the years (2006-2009). During 2006 and 2007 vegetative growth measurements and leaf mineral contents were measured. In 2008 and 2009 when the plum trees had attained maturation and had reached their reproductive stage, the fruit quality and yield were determined.

Each of the humic acid additions in either soil or foliar application method increased the physical attributes (vegetative) of the trees during the first and second seasons of growth relative to the control. The combined foliar and soil applications of humic acid (T₃) increased tree height and Trunk Cross-sectional Area (TCA); shoot number, length and diameter during 2006 and 2007 seasons compared to all other treatments. The largest combined effect of irrigation and humic acid treatments during the vegetative seasons (2006 and 2007)on the plum trees was observed for the T₃ I₂ treatment, followed by the T₃ I₁ and T_1 I₂ in that order. The vegetative growth parameters highlighted the importance of humic acid and its usefulness in increasing water use efficiency for the 10-day irrigation interval as compared to the 5-day interval. Foliar and soil humic acid treatment significantly induced high leaf contents of both macro- and micro- minerals (N, P, K, Fe, Mn and Zn). The soil mode of application T₁ was inferior to the foliar mode of humic acid application $\left(T_2\right)$ during the growing seasons of 2006 and 2007.

In the two studied years 2008 and 2009, the highest yield with good fruit quality was obtained from trees under T_{3} , so it recommended.

INTRODUCTION

Prunus domestica (Kelsey plum) is a very popular deciduous fruit tree in Egypt. Prunus species with many varieties and do well in Egypt's Mediterranean climate. The plum trees have shown a lot of promise in Egypt's calcareous soils and other areas in Egypt that have been newly reclaimed. Calcareous soils are soils of high pH and essential nutrients to plants are trapped or unavailable to plants due to the excessiveness of CaCO₃. Calcareous soils are commonly found in mediterreanean, arid, semi-arid climates such as in Egypt. Over one half of a billion ha of soils in the world are calcerous (Laytem and Mikkelsen, 2005). Field crops as well as fruits are cultivated on these soils but producers are faced with the challenge of plant stress induced by the lack of micro-nutrients (Katkat et al., 2009). The soil fertility of these calcareous soils is limited by losses of nitrogen through ammonification and insolubility of phosphorus (Katkat et al., 2009).

In order to improve the quality and quantity of fruit from these plum trees, various varieties have been introduced that withstand drought and that are highly productive such as Kelsey plum. This variety is grown for its high market value and, attractiveness and its resistance to Plum pox virus (PPV). It has a high content of Vitamins A & C. There have been several studies conducted to increase the production of Kelsey plums. For example, Eissa, (2003) utilized biostimulants to improve the vegetative growth, yield, and fruit quality of Kelsey plums. The Total Soluble Content, fruit firmness and TSS content increased and the shelflife of the fruit increased (Eissa, 2003).

Humic acid is a constituent of organic matter (Asik *et al.*, 2009; Katkat *et al.*, 2009). It is the most active fraction of humus coupled with fluvic acid. As early as 1930's, work was conducted on humic acid and its ability to stimulate plant growth. For example, Burk *et al.*, (1931) conducted experiments whereby they

¹Horticultural Research Institute ,Horticultural Research Center, Egypt. ²Nubaria Research station,Horticultural research Institute,

Horticultural Center, Egypt.

³NaturaL Resource Dep. Nebrasca Univ. Lincolen (USA).

Received Febuary17, 2010, Accepted March 20, 2010

concluded that "The use of humic acid might permit satisfactory or improved growth under substantially neutral or alkaline conditions." De Kock (1955) focused on iron deficient crops and reported that humic acid influences plant growth and development through its interaction with iron promoting increased plant uptake.

Later in the 20th century, increased work on humic acid shows that it promotes soil aggregation, water holding capacity of soils, nutrient availability to plant roots and helps in root development and growth (Lobartini, *et al.*, 1997; Tan, 1998 and 2003; Nardi, *et al.*, 2002, Chen *et al.*, 2004)^a. Humic substances have also been documented to improve micronutrient uptake of zinc and iron by plants (Chen *et al.*, 2004a, 2004b; Elena *et al.*, 2009). Additionally, humic acid forms complexes with some metals enhancing the availability of these micronutrients to root plants and improving their uptake (Chen *et al.*, 2004a; Garcia-Mina *et al.*, 2004). It improves water infiltration in soils that are clayey (Tan, 2003; Katkat *et al.*, 2009).

Humic acids have been reported to improve the physical structure of soils, increase the cation exchange capacity, soil microbial activity and reduced losses of nutrients through leaching (Tan, 2003; Katkat *et al.*, 2009). Additionally, humic acid has been utilized to remediate soils that are polluted (Kulikova et al., 2005) and reduce the effect of soil salinity on plant growth and development (Masciandaro et al., 2002). Several researchers have determined the positive impacts of humic acid on calcerous soils. For example(Katkat et al., 2009). reported that humic acid increased nitrogen, phosphorus, potassium, iron, manganese and zinc uptake. Additionally, humic acid stimulated an increase in wheat dry weight.

The main objective of this study was to evaluate the increased water use efficiency of plum trees subjected to different flood irrigation regimes and modes of humic acid application using vegetative growth and fruit quality parameters. The research attempts to determine whether humic acid can reduce irrigation frequencies while at the same time maintain and/or improving fruit quality and yield through deficit irrigation and humic acid soil amendments.

MATERIALS AND METHODS

Study Site:

The study was conducted at Nubaria Horticultural Research Station, El-Bohira Governorate, over four consecutive growth seasons beginning in 2006 to 2009.

Plant Description:

Prunus domestica L. (Kelsy plum) trees that had been grafted on *Mariana* rootstock were 2-years-old when they were transplanted to a field at a spacing of 4 x 5 meters apart. The trees were disease-free and have similar vigor. Normal agricultural practices recommended for Kelsy plum were applied throughout the experimental duration. The trees were treated with actosol®. a fertilizer whose NPK ratio is 10-10-10 and a Humic acid concentration of 2.9%. Humic acid is manufactured by ARCTECH Inc. in USA.

Experimental Design:

A total of 48 trees were planted to determine the main effects and interaction of two growth variables, namely, humic acid addition and irrigation frequency. Four modes of humic acid additions and three flood irrigation regimes were tested within a split plot experimental design replicated 4 times. Flood irrigation is commonly employed for horticultural field crops and fruit trees. Three watering regimes were tested and included: 5-, 10- and 15- day intervals between flood irrigation.

The modes of humic acid amendment application included:1) Direct soil application of the humic product at the rate of 40 ml per tree (T_1) 2) Foliar application of solution (250ml/100 liters of water) (T_2) 3) Direct soil and foliar application (40 ml per tree and application of 250 ml/100 liters of water) (T_3)and 4) Control (T_4).

Vegetative Growth:

Four uniform branches were selected and tagged at their cardinal points. The average number of new shoots in each of the branches was counted. The length and diameters of each of the shoots was measured in mid-November. Tree height and canopy diameter was measured late in November for the first and second seasons of the experimental duration (2006 and 2007). The trunk cross-sectional area (TCA) was calculated based on the two aforementioned seasons following the method described by Westwood (1988). The trunk diameter for each tree was measured 10 cm above the scion and rootstock union, on the first of March and late November during the two vegetative seasons.

Fruit quality and Yield:

During the month of July when the fruits matured, they were harvested. Harvesting was conducted during the first week of July (2008 and 2009).

Table A. Physical and Chemical Properties of the Experimental Calcareous soil*

Texture	pН	Total CaCO ₃ (%)	EC (dS/m)	Organic Matter (%)
Sandy loam	8.5	32.55	2.12	0.52

*None saline soil (2.12ds/m) of low organic matter(0.52%) and high CaCo₃ content(32.55%).

Twenty mature fruits were picked at random from each tree to determine fruit quality. The average fruit weight was recorded (gm),firmness was determined according to Magness &Taylor.1925 pressure tester using a 5/16" plunger. Additionally flesh thickness, %Total Soluble Solids (TSS) content was measured using a hand-held refractometer. Titratable acidity (TA) was determined as a percent of malic acid using the method outlined in AOAC, (1980).

Leaf Mineral Composition:

The effects of flood irrigation intervals and humic acid application on leaf mineral status were tested during the first and second seasons of the experiment when vegetative development was occurring. Tmenty mature leaves were collected at random from each tree at the beginning of June during the 2006 and 2007 growing seasons. The leaves were rinsed thoroughly with tap water, thereafter with distilled water and dried under a constant temperature range of 70-80°C in an electric air-drying oven. Each sample of dried leaves was ground to powder using a porcelain mortar to avoid contamination. A smaller sample of ground leaves of 0.3 gm was digested using H₂O₂ and H₂SO₄ following Evenhuis and Dewaard (1980). Aliquots were then taken for mineral determination. Total nitrogen(N) and phosphorus (P) were determined colorimetrically following Evenhuis(1976) and Murphy and Riley (1962), respectively. Potassium (K) was determined against a standard using air propane flame photometer following Chapman and Pratt, (1961). Iron (Fe), Manganese (Mn) and Zinc (Zn) were measured using a Perkin-Elmer Analyst Atomic Absorption Spectrophotometer Model 305 B. The concentrations of N, P and K were expressed as a percentage while those of Fe, Mn and Zn were expressed in parts per million (ppm) on a dry weight basis.

Statistical Analysis:

Data collected from each season were analyzed separately, the Least Significant Difference tests were conducted at 0.05 probability level to compare treatments averages (according to Snedecor &Cochran, 1990).

RESULTS AND DISCUSSIONS

Vegetative Growth:

The results reported here increase the evidence that points to the positive effects of humic acid on vegetative growth of plants (Table1). Each of the humic acid additions in either soil or foliar application method increased the physical attributes (vegetative) of the trees during the first and second seasons of growth relative to the control. The combined foliar and soil applications of humic acid (T_3) increased tree height and Trunk Crosssectional Area (TCA); shoot number, length and diameter during the 2005 and 2006 seasons compared to all the other treatments. Noticeable tree diameter increment was recorded during the second year of study (2007). The soil application of humic acid (T_1) outperformed the foliar application (T_2).

Trees grown under the 10-day flood irrigation regime (I_2) were significantly superior to those of the 5day (I_1) and 15-day (I_3) irrigation regimes. Superiority was based on the vegetative growth parameters during the two seasons of study. The largest combined effect of irrigation and humic acid treatments during the vegetative seasons (2006 and 2007)on the plum tree height was observed for the $T_3 I_2$ treatment, followed by the $T_3 I_1$ and $T_1 I_2$ in that order (Table 2). Rapid tree height (cm) increase was limited by water availability in all of the treatments. The highest shoot count, diameter and length were recorded for trees that received soil and foliar HA application together with a 10-day flood irrigation interval (Table 3). The shoot count for the T_3x I₂ treatment was almost twice that of the control. These results are similar to those of Fern?ndez-Escobar et al. (1996) who reported that olive trees growing in the field and treated with a foliar application of humic substances exhibited increased Fe content and increased shoot growth.

Leaf Macro and Micro Nutrients:

Several studies have been conducted to evaluate the effect of humic acid on plant nutrient uptake, have shown the positive benefits of humic acid. For example, Asik *et al.*, (2009) in their study working with wheat, showed that the uptake of N increased with soil application. Foliar application increased, P, K, Mg, Na, Cu and Zn in saline soils. In this study, the leaf content of N, P, K, Mn, Zn and Fe increased when compared to the control and this had a direct effect on the fruit size and quality.

Leaf Macro Mineral Contents :

Nitrogen (%):

The effect of foliar application of HA (T_2) was more noticeable on the nitrogen content of fruit tree leaves than trees subjected to a soil application of HA (T_1). A combined application of HA to soil and foliage (T_3) produced results which were not significantly different than those of similar to that of (T_2) for both growing seasons. Foliage nutrient uptake was more pronounced for the trees with a rise as high as 0.11% in the (T_3) treatment that received flood irrigation water every 15 days (I_3).

Irrigation ×HA	HA	Irrigation	L.S.D.(0.05)	Mean	Control	Soil and Foliar	Foliar	Soil	Application	Mode of Humic	Irrigation	(2007)	Second season	Irrigation×HA	HA	Irrigation	L.S.D.(0.05)	Mean	Control	Soil and Foliar	Foliar	Soil	Application	Mode of Humic	Irrigation	First season (2	Table 1.
				209.250	190.000	220 000	212.000	215,000			-							123.	115.	130.	122.	125.			-	006)	Effect
				213.000	191.000	225.000	217.000	219.000					Tree I					000 128	11 000	000 140	000 127	000 125				1	of H1
4.936	1.994	2.079		0 186.5	0 159.0	0 199.0) 193.0	9 195.0			-		leight (cm	4.400	2.303	2.909		3 750 1	9.000 1	0.000 1	7.000 1	9.000 1			Ŀ	ree Height	umic
				8	00 180	00 214	00 207	00 209			м		÷					18 200	12.000	22.000	18.800	20.000			5	(cm)	acid :
					.000 1	.667 13	.333 12	.667 13			can								115.333	130.667	122.600	124.667			Mean		and i
				23.100	15.000	29.300	22.600	25,500			-							95.050	88.400	100.100	92.300	99,400			-		rriga
6.1	4.0	5.8		125.325	116.500	133-100	124.400	127,300					Tree Diam					99.10	90.40	110.30	95.30	100,40			-	Tree D	tion t
07	00	91		109.250	99.000	102.500	117.500	118.000			5		ieter (cm)	4.583	4.458	2.998		0 90.5	0 85.0	95.30	0 91.40	0 90,40			5	iameter (c	reatn
					110,16	121 63	121.50	123,60			Mean							25	00 87 9	101.	90 93.0	ж 96.			Me	E	lents
				10.61	7 5.93	3 12.71	11.88	0 11.63			-							4	933 1.0	8.000)00 2.7	133 4.1			1		on th
				7 10.53	5 13.28	7 13.28	2 12.7	2 10.04			12		TCA i					168 5.0	501 1.7	164 9.0	163 3.2	45 6.0			-	TCA	le veg
1.362	0.539	0.638		6 6.30	17 2.51	7 8 40	9 7.03	18 7.25			f.		terease (cr	2.142	0.459	0.07 8		46 2.51	89 0.87	67 3.54	97 2.35	29 3.29			5	increase (etativ
				13	2 4825	9 11.47	4 10.56	3 9.77			Mea		n²)					8	9 1.42	0 6.92	5 2.80	7 4,49			Mea	, iii, i	ve gro
				6.62	4.50	1 8.000	5 6.50	4 7.50			-							5.879	3 4.50(4 7.000	5 5.500	0 6.500			- -)wth
				7.625	5.500	9.000	8.500	7.500			ŀ.		Shee		6			6.375	4.500	8.500	6.500	6,000			5	Shoo	of plu
1.433	0.685	1.124		5 3 1 3	4.500	5.750	4.500	6.500			5		t Number	1.047	913	800		4,938	4.000	5.750	4.500	5.500			ц.	t Number	um tr
					4,833	7.583	6.500	7.167			Mean								4.333	7.083	5.500	6.000			Mean		ees di
				67.958	52.400	80.130	67.170	72.130			-							66.160	50.130	78.130	65.130	71.250			<u>-</u> -		uring
				70.190	54.130	82.130	69.250	75.250			I ₂		Shoot			0		68.240	52.300	80.130	67.130	73,400			12	Shoot	2006
1.966).621	200		65.788	50.250	75.250	65.250	72.400			F		ength (cm	1981	1.505	7 03		64.673	49.130	75.130	64.130	70,300			1	ength (cm	and
) 52.26	79.17	67.22	73.26			Mean		0						50.520	77.79	65.46	71.65			Mean		2007
				0,615	0 0.560	0 0.650	3 0.620	0.630			Ļ							0 608	0.550	7 0 650	0 610	0.620			F		grow
0				0.630	0.550	0.680	0.640	0.650			I_{2}		Shoot di					0.625	0.550	0.680	0.630	0.640			ŀ.	Shoot di	ing su
1.025	1103	014		0.588	0.550	0.620	0.600	0.580			Ŀ		ameter (cn	1,018	1.014	1012		0.580	0.530	0.610	0.590	0.590			13	ameter (cn	eason
					0.533	0.650	0.620	0.620			Mean		÷						0.543	0.647	0.610	0,617			Mean	-	

t seaso	ble
n (2006)	1. E
-	ffeet
	of H
Free Hei-	umi
sht (cm)	c aci
	d an
	d irr
	igati
Tree D	ion t
ameter	reat
	ment
	s on
	the
TCA inc	vege
reace (cn	tativ
2	egro
	wth
Sh	of p
nof Numi	lum
	trees
	dur
	ing
Shootle	9006
noth (cm	and
-	2007
	gro
Shoo	wing
t diamete	seas
÷.	١ä -

Irrigation×HA	. HA	Irrigation	L.S.D.(0.05)	Mean 2.118	Control 1.820	Soil and Foliar 2.270	Foliar 2.140	Soil 2.240	Mode of Humic Application	Irrigation I ₁	Second season (2007)	Irrigation×HA	HA	Irrigation	L.S.D.(0.05)	Mean 2.083	Control 1.770	Soil and Foliar 2.240	Foliar 2.100	Soil 2.220	Mode of Humic Application	Irrigation I ₁	First scason (2006)	seasons	Table 2. Effect of Humic acid and in
0.1	0.0	0.0		2.118	1.840	2.260	2.150	2.220		\mathbf{l}_2	N (0.04	0.02	0.02		2.090	1.800	2.250	2.100	2.210		\mathbf{I}_2	N (%		rigation (
20	24	27		2.073	1.780	2.210	2.110	2.190		I3	%)	12	124	22		2.030	1.750	2.190	2.000	2.180		I ₃	٢		treatment
					1.813	2.247	2.133	2.217		Mean							1.773	2.227	2.067	2.203		Mean			s on the le
				0.205	0.160	0.250	0.200	0.210		I.						0.200	0.160	0.240	0.190	0.210		I ₁		1	af macro-
0.0	0.0	0.0		0.220	0.180	0.270	0.200	0.230		I ₂	P (0.0	0.0	0.0		0.210	0.170	0.260	0.190	0.220		I ₂	P (%		mineral co
)20)12	909		0.190	0.160	0.210	0.180	0.210		I3	%)	16	16	14		0.193	0.170	0.220	0.180	0.200		I ₃	•)		ontent of j
					0.167	0.243	0.193	0.217		Mean							0.167	0.240	0.187	0.210		Mean			plum tree
				1.353	1.250	1.520	1.310	1.330		I,						1.333	1.240	1.490	1.290	1.310		I.			s during
0.04	0.01	0.02		1.358	1.210	1.560	1.320	1.340		I_2	K (%	0.059	0.015	0.024		1.353	1.210	1.550	1.320	1.330		l ₂	K (%		2006 and
7	6	3		1.285	1.200	1.420	1.250	1.270		I3	9					1.280	1.210	1.390	1.240	1.280		I 3			1 2007 g
					1.220	1.500	1.293	1.313		Mean							1.220	1.477	1.283	1.307		Mean			rowing

د 5 R . ‡ _ • **.**. 2 <u>___</u> 2

HA	. Irrigation	L.S.D.(0.05)	Mean	Control	Soil and Foliar	Foliar	Soil	Mode of Humic Application	Irrigation	Second season (2007)	Irrigation×HA	HA	Irrigation	L.S.D.(0.05)	Mean	Control	Soil and Foliar	Foliar	Soil	Mode of Humic Application	Irrigation	First season (2006)	seasons
			157.250	144.000	169.000	154.000	162.000		-						156.750	145.000	168.000	153.000	161.000		I		
1.8	0.4		159.000	145.000	171.000	156.000	164.000		I ₂	Fe (J	2.6	3.1	2.1		157.750	144.000	170.000	155.000	162.000		I2	Fe (J	
375	594		151.750	137.000	161.000	150.000	159.000		I ₃	opm)	527	32	60		151.500	139.000	160.000	149.000	158.000		I ₃	opm)	11. A
				142.000	167.000	153.333	161.667		Mean							142.667	166.000	152.333	160.333		Меап		
			50.750	43.000	60.000	48.000	52.000		I						49.500	42.000	58.000	47.000	51.000		Ŀ		
0.9	1.0		51.500	41.000	62.000	50.000	53.000			Mn (j	2.9	1.4	1.9		51.000	42.000	61.000	49.000	52.000		I ₂	Mn (
94	09		47.000	39.000	53.000	45.000	51.000		I3	opm)	41	82	29		46.500	40.000	52.000	44.000	50.000		I3	opm)	
				41.000	58.333	47.667	52.000		Mean							41.333	57.000	46.667	51.000		Mean		
			28.000	21.000	33.000	28.000	30.000		I						27.000	21.000	31.000	27.000	29.000		_		
1.2	0.9		30.000	21.000	36.000	31.000	32.000		I_2	Zn (p	1.6	1.2	2.0		28.750	22.000	33.000	29.000	31.000		l_2	Zn (p	
69	12		26.750	19.000	32.000	27.000	29.000		I3	ipm)	45	49	69		25.500	19.000	30.000	25.000	28.000		I3	ipm)	
				20.333	33.667	28.667	30.333		Mean							20.667	31.333	27.000	29.333		Mean		

Jable 3. Effect of Humic acid and irrigation treatments on the leaf macro-mineral content of plum trees during 2006 and 2007 growing

Irrigation×HA

2.518

3.224

1.257

Phosphorus (P %):

Whenever P fertilizer is applied to calcareous soil, it results in the precipitation of Ca phosphates which inhibits plants from acquiring the nutrient (Sample et al., 1980). However, the results of the experiment show that treatment of plum Kelsey trees and soils increased P uptake. The phosphorus content of fruit tree leaves (%) that were treated with HA applied in the soil (T_1) was higher than that applied to the foliage. A combined application of HA to soil and foliage (T_3) produced the highest phosphorus content in both the growing seasons (2006 and 2007). Root nutrient uptake of phosphorus is higher for fruit trees. As shown below, the reduced rate of irrigation impacted the leaf phosphorus content especially for irrigation treatment I₃. This positive impact of humic acid on calcareous soils in increasing P availability has also been documented by Delgado et al., (2002) who expounded that organic matter "slows the precipitation of poorly soluble Ca phosphates" and a mixture of Humic-Fulvic Acid increases the efficiency of P fertilizers. Additionally, Fixen et al., (1983) and Havlin and Westfall (1984) noted that fluvic and humic organic amendments increased the efficiency of P fertilizers and the availability of soluble Ca phosphates.

Potassium (K%):

The effect of HA treatments on the potassium content of leaves was very similar to that in Nitrogen (discussed above). T_1 and T_2 were not significantly different in terms of the K% in leaves. The combined effect of HA on both foliage and soils, increased the K% content compared to the rest of the treatments for the 2006 and 2007 growing seasons. Water availability decreased the K content in leaves especially for the I_3 flood irrigation frequency.

Leaf Micro Mineral Contents:

Soil application (T_1) proved to be beneficial for root uptake of Iron, Manganese and Zinc during the 2 growing seasons. The combined application (T_3) induced the highest micro-nutrient content in leaves. It was evident also that the best irrigation rate for micromineral uptake as evidenced in micro-nutrient leaf content was I₂ (10-day interval) for all HA treatments. The leaf iron content increase can be explained by the fact that humic acid decreases the pH of soils thereby releasing inorganic and organic iron compounds which would otherwise have precipitated with high pH (Burk et al, 1931). Humic-metal complexes are very instrumental in increasing availability of micronutrients to plants (Pinto et al., 1999; Chen et al. 2004a, Chen et al. 2004b; Garcia-Mina, 2006; Elena et al. 2009). According to Burk et al. (1931), natural humic acid increases growth through the iron it contains. Burk et al,

(1931) reported that humic acid may be classified as a stimulant that provides iron for nutrient and growth such that iron is more available when compared to other media. Adani *et al.*, (1998) studying tomatoes, attributed stimulated growth and uptake of iron to the possibility of humic acid playing a major role in the reduction of Fe^{3+} to Fe^{2+} . Iron contained in humic acid may promote plant cell processes such as "respiration, nitrification, catalase activity" (Burk *et al*, 1931).

Additionally, Ozaki *et al.*, (2003) conducting experiments with rice to determine how humic acid affects the uptake of radionuclides by rice plants. They determined that the humic acid that was adsorbed on the rice root surface attracted Mn and Zn such as that there were increased micro-nutrient amounts readily available for uptake by rice plants. They also discovered that the pH of the culture medium and the addition of humic acid, had an influence of Mn and Zn uptake such that uptake increased at pH 4.3 while uptake decreased at pH 5.3 (Ozaki *et al.*, 2003). This is in agreement with results in this study where the Mn and Zn leaf contents were always lower for the control (no amendment) whose soils had high pH.

Tree Yield (kg):

During the first harvest season (2008), the average fruit tree yield values, were similar in the treatments where HA was applied to the soil (T_1) (2.224 kg) and when HA was applied to the foliage (T_2) (2.220 kg) (Table 4). The combined application of HA to both foliage and soil (T_3) resulted in the highest yield of 2.48 kg. In the following year, (2009), the yields for either soil or foliar HA application had increased by a factor of 1.9 while that of the combined application (T_3) had increased by a factor of 2.28. The tree yield of the control (no HA application) increased by a factor of 1.52. Several researchers have also determined the positive impact on HA on crop yield. Sangeetha et al., (2006) reported an increase in onion yields. Additionally Adani et al., (1998) and David et al., (1994), noted higher yields for tomatoes and nutrient uptake respectively. Govindasmy and Chandrasekaran, (1992) likewise determined that humic acid increased the growth rate, yields and sugar content of sugarcane.

Fruit weight (gm):

Data in (Table 4) indicates that (T_3) treatments recorded the highest mean fruit weight of 90.6 and 103.7 gm during the 2008 and 2009 harvest seasons respectively. Fruits grown under one mode of HA application (T_1) and (T_2) , weighed 4.2 and 5.3 gm less than fruits grown under the combined treatment (T_3) in 2008. The difference in weight was more pronounced in 2009, when the fruits grown under (T_1) and (T_2)

growing season																
Third season (2008)		Tre	e yield	ĺ		Fru	it weight		E	ruit pola	r diamet	ter	Fruit	equator	ial dian	leter
			kg)	 			(gm)			(c	m)			(en	n)	
Irrigation	I ₁	I_2	\mathbf{I}_3	Mea	n I ₁	I2	I3	Mean	I1	I_2	I ₃	Mean	I,	I ₂	I_3	Mean
Mode of Humic								Ì				İ				
Application																
Soil	2.228	2.225	2.218	2.22	4 88.60	0 86.20	0 84.400	0 86.400	4.780	4.650	4.550	4.660	4.540	4.390	4.300	4.410
Foliar	2.224	2.221	2.216	2.22	87.20	0 85.10	0 83.600	3 85.300	4.710	4.590	4.510	4.603	4.450	4.340	4.260	4.350
Soil and Foliar	2.620	2.614	2.207	2.48	0 95.40	0 89.60	0 86.80	0 90.600	5.150	4.840	4.690	4.893	4.870	4.560	4.430	4.620
Control	1.970	1.965	1.960	1.96;	5 80.30	0 77.00	0 75.200	0 77.500	4.330	4.160	4.060	4.183	4.100	3.930	3.840	3.957
Mean	2.261	2.256	2.150		87.87	5 84.47	5 82.50	0	4.743	4.560	4.453		4.490	4.305	4.208	
L.S.D.(0.05)																
Irrigation		0	.106				0.509			0.1	18			0.1	15	
HA		0	.131				0.627			0.1	46			0.1	42	
Irrigation×HA		0	.357				1.706			0.3	96			0.3	85	
Fourth season (2009)		Tree y	ield			Fruit	weight		T	ruit pola	r diame	ter	Fruit	equator	rial dian	leter
		(kg				B)	E)			(c	m)			(cı	n)	
Irrigation	I ₁	I_2	I3	Mean	I ₁	I ₂	I3	Mean	I	I 2	I ₃	Mean	-	\mathbf{I}_2	l ₃	Mean
Mode of Humic																
Application																
Soil	4.265	4.240	4.128	4.241	92.800	91.600	90.400	91,600	5.010	4.950	4.880	4.947	4.730	4.670	4.610	4.670
Foliar	4.255	4.221	4.209	4.228	91.400	90.800	90.000	90.733	4.940	4.900	4.860	4.900	4.650	4.630	4.530	4.603
Soil and Foliar	5.690	5.645	5.633	5.656	105.600	103.700	101.800	103.700	5.700	5.600	5.500	5.600	5.390	5.290	5.190	5.290
Control	2.995	2.985	2.965	2.982	85.600	84.700	82.900	84.400	4.620	4.570	4.080	4.423	4.370	4.330	4.230	4.310
Mean	4.301	4.273	4.256		93.850	92.700	91.275		5.068	5.005	4.830		4.785	4.730	4.640	
L.S.D.(0.05)																
Irrigation		0.21	S			0	88			0.	146			0.1	33	
HA		0.26	ŭ			0.	124	1448 Wommen		0.	180			0.1	63	
Irrigation×HA		0.72				. 1.9	170			0.4	161			0.4	45	

Table 4. Effect of Humic acid and irrigation treatments on the yield and physical fruit quality of plum trees during 2008 and 2009

weighed an average of 12.1 and 13.0 gm less than those

S. El-Shall et al.,: The Influence of Humic Acid Treatment on The Performance and Water Requirements of Plum...

Table 5. Effect of Hu	umic ac	id and	irriga	tion tr	eatmen	ts on th	ie phys.	ical and	l chemi	cal frui	t qualif	y of pl	um tre	ses dur	ing 20	08 and
2009growing season)				•				1	•)	
Third season (2008)		Flesh Tl	nickness			Fruit fin	rmness			ST	S			Acid	lity	
		(cı	(u			(Ib/	I ²)			6)	()			~))	()	
Irrigation	11	I_2	I_3	Mean	I,	\mathbf{I}_2	I_3	Mean	I	I ₂	I ₃	Mean	I	I ₂	I ₃	Mean
Mode of Humic																
Application																
Soil	2.000	1.950	1.950	1.967	13.800	13.870	13.990	13.887	14.900	14.800	14.500	14.733	0.640	0.660	0.690	0.663
Foliar	1.980	1.930	1.890	1.933	13.770	13.850	13.950	13.857	14.900	14.700	14.300	14.633	0.640	0.650	0.680	0.657
Soil and Foliar	2.160	2.030	1.970	2.053	13.870	13.950	14.110	13.977	15.400	15.200	14.900	15.167	0.650	0.690	0.720	0.687
Control	1.820	1.750	1.710	1.760	13.990	14.120	14.330	14.147	13.300	12.900	12.200	12.800	0.600	0.630	0.650	0.627
Mean	1.990	1.915	1.880		13.858	13.948	14.095		14.625	14.400	13.975		0.633	0.658	0.685	
L.S.D.(0.05)								1								
Irrigation		0.0	76			0.0	86			0.2	16			0.0	39	
HA		0.0	94			0.1	96			0.2	<u>66</u>			0.0	48	
Irrigation×HA		0.2	55			0.2	89			0.7	24			0.1	30	
Fourth season (2009)		Flesh TI	nickness			Fruit fi	rmness			T	S			Acid	lity	
		(CI	(L			(IP/	I ²)			6)	()			%	()	
Irrigation	I,	I	I ₃	Mean	I1	I_2	I_3	Mean	I	I 2	I ₃	Mean	I ₁	I_2	I ₃	Mean
Mode of Humic																
Application																
Soil	2.100	2.080	2.050	2.077	13.820	13.880	14.000	13.900	14.800	14.800	14.600	14.733	0.650	0.670	0.690	0.670
Foliar	2.070	2.060	2.040	2.057	13.780	13.860	13.980	13.873	14.700	14.800	14.500	14.667	0.640	0.660	0.690	0.663
Soil and Foliar	2.390	2.350	2.310	2.350	13.890	13.980	14.160	14.010	15.500	15.300	15.200	15.333	0.660	0.680	0.730	0.690
Control	1.940	1.920	1.720	1.860	13.980	14.150	14.360	14.163	13.200	12.900	12.300	12.800	0.610	0.620	0.650	0.627
Mean	2.125	2.103	2.030		13.868	13.968	14.125		14.550	14.450	14.150		0.640	0.658	0.690	
L.S.D.(0.05)																

46

•

0.039 0.048 0.131

0.218 0.269 0.732

0.088 0.109 0.296

0.094 0.116 0.317

Irrigation×HA

Irrigation

HΑ

Fruits grown under (T_4) were consistently smaller and weighed 14.5% and 18.6% less than those of (T_3) in the 2008 and 2009 harvest seasons, respectively.

Fruit polar and equatorial diameters (cm):

A soil and foliar application of HA (T_3) was superior to either the foliage application of HA (T_2) or the soil application (T_1) resulting in both longer fruit polar and equatorial diameter. The fruits grown under control treatment (no HA application) were always shorter by as much as 0.7 to 1.2 cm during the 2008 and 2009harvest seasons, when compared to those treated with HA.

Acidity %:

Acidity increases with decreased water availability (Table 5). There was a negligible increase in fruit acidity over the two harvest seasons, which was not significant (0.01%). Fruit acidity decreased slightly (0.01%) for the combined HA application irrigated at a 10-day interval. Additionally, fruits grown without any HA addition (the control), had a slight decrease in % acidity (0.01%).

Total Soluble Solutes (%):

The % of TSS of the fruit decreased with reduced flood irrigation water availability. It was noticeable that during the 2009 harvest season, the more frequent flood irrigation (5-day interval) resulted in a decrease in %TSS relative to that of the 2008 harvest season.

Flesh Thickness (cm):

Fruits that are irrigated every 15 days were generally less fleshy than those that were irrigated every 5 days. A HA application to both tree foliage and soil produced fruits that were more fleshy. During the 2009 harvest season, the flesh thickness of the fruits growing under combined tree foliage and soil HA application, increased between 10.65 - 17.26% when compared to those grown under a control that exhibited an increase ranging from 0.58-9.71% of that of the previous harvest season.

Fruit Firmness (Ib/I²):

Reduced irrigation frequency yielded the highest fruit firmness for all the treatments. Control treatments exhibited the highest fruit firmness with each irrigation regime. However, HA application (T_3) and least water application (I_3) induced the highest increase in fruit firmness for 2008 and 2009 harvests as compared to the other treatments.

CONCLUSION

Vegetative Growth:

The results of this study indicate that soil application of HA (T_1) and foliar application (T_2) modes of HA

increased the vegetative growth of the trees. However, the soil application was superior to the foliar application. The combined amendments, T_3 (soil and foliar application of humic acid) significantly increased the height and TCA of the trees and the number, length and diameter of the shoots during the 2006 and 2007 vegetative seasons. The effect of T_3 on tree diameter was observable during the second season.

Irrigation:

It was noticeable from the results that flood irrigation after 10 days was more effective than both the 5- (I_1) and 15-day (I_3) interval. The 15-day interval was detrimental to vegetative growth than the 5-day interval as shown by the results during the two tested seasons. The differences between treatments were significant.

Fruit Quality and Yield:

Fruit yield per tree reveals that the highest significant average fruit yield (kg) was obtained from trees grown under T_3 followed by those trees grown under T_1 , T_2 and the control in that order. The differences between T_1 and T_2 were not significant. The data also clearly show that trees grown under I_1 and I_2 produced yields that were significantly higher than those grown under I_3 in 2008. In 2009, the differences between the irrigation regimes (I_1 , I_2 and I_3) were not significant.

REFERENCES

- Adani, F., P. Genevini, P. Zaccheo and G. Zocchi, 1998. The effect of commercial humic acid on tomato plant growth and mineral nutrition. J. Plant Nutr., 21: 561-575.
- Anonymous, 2005. Agricultural Statistics. Economic Affairs Sector, Egyptian Ministry of Agriculture and Land Reclamation, Cairo.
- AOAC 1980. *Official methods of analysis* (13th ed.). Washington, DC: Association of Official Analytical Chemists.
- Asik, B.B., M.A. Turan, H. Celik and A.V. Katkat, 2009. Effects of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. Salihli) under conditions of salinity. Asian J. Crop Sci., 1: 87-95.
- Burk, D., Lineweaver, H., Horner, C. K. and F.E. Allison 1931. The Relation between Iron, Humic Acid and Organic Matter in the Nutrition and Stimulation of Plant Growth. Science, New Series, Vol. 74, No. 1925 (Nov. 20, 1931), pp. 522-524 Published by: AmericanAssociationfor the Advancement of Science.
- Chapman, H.D. and P.F. Pratt 1961. Methods of analysis for soil, plant and water. University of California, Division of Agricultural Sciences. Riverside California.
- Chen Y., C.E. Clapp and H. Magen. 2004a. Mechanism of plant growth stimulation by humic substances: the role of

organo-iron complexes, Soil Sci. Plant Nutr. 50 (2004) 1089–1095.

- Chen Y., M. De Nobili, and T. Aviad. 2004b. Stimulatory effects of humic substances on plant growth, in: F. Magdoff, R.R. Weil (Eds.), Soil Organic Matter in Sustainable Agriculture, CRC Press., Boca Raton, Florida, 2004, pp. 103–129.
- Chen, Y. and T. Aviad, 1990. Effect of Humic Substances on Plant Growth. In: Humic Substances in Soil and Crop Sciences: Selected Reading, MacCarthy, P., C.E. Clapp, R.L. Malcolm and P.R. Bloom (Eds). Soil Science Society America, Madison, WI., pp: 161-187.
- Clapp, C.E., Chen, Y., Hayes, M.H.B., Cheng, H.H., 2001. Plant growth promoting activity of humic substances. In: Swift, R.S., Sparks, K.M. (Eds.), Understanding and Managing Organic Matter in Soils, Sediments, and Waters, International Humic Science Society, Madison, pp. 243–255.
- David, P.P., P.V. Nelson and D.C. Sanders, 1994. A humic acid improves growth of tomato seedling in solution culture. J. Plant Nutr., 17: 173-184.
- De Kock P.C. 1955. Influence of Humic Acids on Plant Growth. Science, New Series, Vol. 121, No. 3144 (Apr. 1, 1955), pp. 473-474 Published by: American Association for the Advancement of Science http://www.jstor.org/stable/1681670 Accessed: 18/01/2010 13:45.
- Delgado, A., A. Madrid, S. Kasem, L. Andreu, and M.C. del Campillo. 2002. Phosphorus fertilizer recovery from calcareous marsh soils amended with humic and fulvic acids. Plant Soil 245:277–286.
- Elena A., Diane L., Eva B., Marta F., Roberto B., Zamarreno A.M. and J.M. Garcia-Mina. 2009. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant physiology and biochemistry. 47: 215-223
- Eissa, F.M., 2003. Effect of Some Biostimulants on Vegetative Growth, Yield, and Fruit Quality of Kelsey Plum. Egypt J. Appl. Sci., 18. http://www.insipub.com/ajbas/2008/1432-1437.pdf
- Evenhuis, B. (1976). Nitrogen determination. Dept. Agricultural Research. Royal Tropical Institute of Amsterdam.
- Evenhuis, B. and L.P. Riley (1962). A modified single solution method for the determination of phosphorus in natural water. Anal. Chemistry. Acta 27: 31-36.
- Evenhuis, B. and P.W. Dewaard, 1980. Principles and practices plant analysis F.A.O soil Bull.39(1):152-163.
- Fern?ndez-Escobar R, Benlloch M, Barranco D, Due?as, A and G.J. A. Ga??n 1996 Response of olive trees to foliar application of humic substances extracted from leonardite. Sci. Hortic. 66, 191–200.

- Fixen P. E., Ludwick A. E. and S.R. Olsen. 1983. Phosphorus and potassium fertilization of irrigated alfalfa on calcareous soils: II. Soil phosphorus solubility relationships. Soil Sci. Soc. Am. J.47, 112–117.
- Garcia-Mina J.M., Antolı'n M.C., Sanchez-Diaz M., 2004. Metal-humic complexes and plant micronutrient uptake: a study based on different plant species cultivated in diverse soil types, Plant Soil 258: 57–68.
- Garcia-Mina J.M. 2006. Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Org. Geochem. 37 1960–1972.
- Govindasmy, R. and S. Chandrasekaran, 1992. Effect of humic acids on the growth, yield and nutrient content of sugarcane. Sci. Total Environ., 117: 575-581.
- Havlin J. L. and D. G. Westfall. 1984. Soil test phosphorus and solubility relationships in calcareous soils. Soil Sci. Soc. Am. J. 48, 327–330.
- Katkat A.V., Celik H., Turan M.A. and B.B. A??k. 2009. Effects of Soil and Foliar Applications of Humic Substances on Dry Weight and Mineral Nutrients Uptake of Wheat under Calcareous Soil Conditions. Australian Journal of Basic and Applied Sciences, 3(2): 1266-1273, 2009.
- Kulikova, N.A., E.V. Stepanova and O.V. Koroleva, 2005. Mitigating activity of humic substances: Direct Influence on Biota. In: Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, NATO Science Series IV: Earth and Environmental Series, Perminova, I.V. (Eds). Kluwer Academic Publishers, USA., ISBN: 978-1402032509, pp: 285-309.
- Leytem, A.B. and R.L. Mikkelsen, 2005. The nature of phosphorus in calcareous soils. Better Crops, 89 (2):11-13.
- Lobartini, J.C., G.A. Orioli and K.H. Tan, 1997. Characteristics of soil humic acid fractions separated by ultrafiltration communication in soil science and plant analysis,28:787-796.
- Magnes, J.R. and G.F. Taylor, (1925). An improved type of pressure tester for the determination of fruit maturity. U.S. Dept.agric.-Circ. 350, 8pp.
- Masciandaro, G., B. Ceccanti, V. Ronchi, S. Benedicto and L. Howard, 2002. Humic substances to reduce salt effect on plant germination and growth. Commun. Soil Sci. Plant Anal., 33: 365-378.
- Murphy, J. and J.P Riley, 1962. A modified single solution method for the determination of phosphorus in natural water. Anal chim. *Acta*,27: 31-36.
- Nardi, S., D. Pizzeghello, A. Muscolo and A. Vianello, 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 34:1527-1536.
- Okie W.R. and J.F. Hancock. 2008. Chapter 11: Plums. In Hancocks JF (ed) Temperate Fruit Crop Breeding Germplasm to Genomics. Publisher: Springer Netherlands.

- Ozaki T. Ambe S. Abe T. and J.F. Arokiasamy. 2003. Effect of humic acid on the bioavailability of radionuclides to rice plants. Anal Bioanal Chem (2003) 375: 505–510.
- Pinton R., Cesco S., Santi S., Agnolon F. and Z. Varanini. 1999. Water-extractable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants, Plant Soil 210:145–157.
- Ramming D.W. and Cociu V 1991. Plums In: Moore JN, Ballington, JR (eds) Genetic resources of temperate fruit and nut crops. Acta Hortic. 290(1):233-287.
- Sample E. C., Soper R. J. and Racz G. J. 1980. Reactions of phosphate fertilizers in soils. *In* The Role of Phosphorus in Agriculture. Eds. F. E. Khassawneh, E. C. Sample and E. J. Kamprath. pp. 263–310. ASA, CSSA, SSSA, Madison, WI.
- Sangeetha, M., P. Singaram and R.D. Devi, 2006. Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability. Proceedings of 18th World Congress of Soil Science July 9-15, Philadelphia, Pennsylvania, USA.
- Snedecor, G.W. and G. W. Cochran 1990. Statistical methods. 7th Ed., Iowa State University. USA pp. 593.
- Tan, K.H., 1998. Colloidal Chemistry of Organic Soil Constituents. In: Principles of Soil Chemistry, Ed., K.H. Tan, Marcel Dekker New York ,pp:177-258.
- Tan, K.H., 2003. Humic Matter in Soil and Environment, Principles and Controversies. Marcel Dekker, Inc., Madison, New York, ISBN: 0-8247-4272-9.
- Westwood, M.N1988. Temperate-Zone Pomology. Timber Press. 9999. S.W. Wishire Portland, Oregon, 97225. PP 181.

الملخص العربي

تأثير معاملة حمض الهيوميك(HA)على السلوك والاحتياجات المائية لأشجار البرقوق المتررعة في الأرض الجيرية

سعد الشال، وصفى ماهر عبد المسيح، نجوى أبو المجد عبد الجيد، جان أو كاليبو

أجرى هذا البحث فى محطة بحوث بساتين النوباريــة محافظــة البحيرة لدراسة تأثير معاملةحمض الهيوميك (HA) وجدولة الــرى بالغمر على نمو أشجار البرقوق صنف"كلزى". أجرى البحث على فترة أربع سنوات بدأت فى عام ٢٠٠٦ عنــدما كانــت أشــجار البرقوق فى عمر سنتان ومطعومة على أصل برقوق الماريانا وحــتى عام ٢٠٠٩.

وكان نظام التصميم الإحصائي المستخدم هو نظــام القطــع المنشقة split-plot design

T₁ إضافة أرضية من حمض الهيوميك للأشجار حول جذع الشجرة. T₂ إضافة رشا على الأشجار.

Control عبارة عن T₂ + T₁ بالإضافة الى معاملة المقارنه T₃ (بدون إضافة حمض هيوميكHA). أجريت معاملات ال HA خلال أشهر أبريل ومايو ويونيو ويوليو في الفترة من ٢٠٠٦ - ٢٠٠٩.

تم اخذ قياسات النمو الخضرى فى عامى ٢٠٠٦ و ٢٠٠ وكذلك المحتوى المعدى للأوراق بينما تم دراسة محصول الأشـــجار وصفات جودة الثمار فى عامى ٢٠٠٨ و ٢٠٠٩. أدت معاملات المحط المحل سواء الأرضية أو رشا علــى الاوراق الى تحــسين للنمـو مقطع الجذعمTC وعدد النموات الحديثة وطولها وقطرها خــلال عامى ٢٠٠٦ و ٢٠٠٢ مقارنة ببقية المعــاملات. وهــذا أدى الى وضوح وفائدة المحل فى زيادة كفاءة استخدام المياه لفترة الـرى كل ١٠ يوم عند مقارنتها بفترة الرى كل ٥ يوم. T3 أيضا أعطت محتوى عالى معنويا من ٢٠ ما، ٢٩ ما، Fe، الى الحصول على أعلى الدراسة ٢٠٠٨ و ٢٠٠٩ أدت المعاملة T3 الى الحصول على أعلى محصول وصفات جودة ثمار لذلك تمت التوصية بحا.